首页> 外文期刊>Plasma physics and controlled fusion >Physics-based control-oriented modeling and robust feedback control of the plasma safety factor profile and stored energy dynamics in ITER
【24h】

Physics-based control-oriented modeling and robust feedback control of the plasma safety factor profile and stored energy dynamics in ITER

机译:基于物理的面向控制的建模以及等离子体安全因子分布和ITER中存储的能量动力学的鲁棒反馈控制

获取原文
获取原文并翻译 | 示例
       

摘要

Many challenging plasma control problems still need to be addressed in order for the ITER plasma control system (PCS) to be able to maintain the plasma within a predefined operational space and optimize the plasma state evolution in the tokamak, which will greatly aid in the successful achievement of ITER's goals. Firstly in this work, a general control-oriented, physics-based modeling approach is developed to obtain first-principles-driven (FPD) models of the plasma magnetic profile and stored energy evolutions valid for high performance, high confinement (H-mode) scenarios, with the goal of developing model-based closed-loop algorithms to control the safety factor profile (q profile) and stored energy evolutions in the tokamak. The FPD model is tailored to H-mode burning plasma scenarios in ITER by employing the DINA-CH & CRONOS free-boundary tokamak simulation code, and the FPD model's prediction capabilities are demonstrated by comparing the prediction to data obtained from DINA-CH & CRONOS. Secondly, a model-based feedback control algorithm is designed to simultaneously track target q profile and stored energy evolutions in H-mode burning plasma scenarios in ITER by embedding the developed FPD model of the magnetic profile evolution into the control design process. The feedback controller is designed to ensure that the closed-loop system is robust to uncertainties in the electron density, electron temperature and plasma resistivity, and is tested in simulations with the developed FPD model. The effectiveness of the controller is demonstrated by first tracking nominal q profile and stored energy target evolutions, and then modulating the generated fusion power while maintaining the q profile in a stationary condition. In the process, many key practical issues for plasma profile control in ITER are investigated, which will be useful for the development of the ITER PCS that has recently been initiated. Some of the more pertinent investigated issues are the time necessary to drive the q profile and stored energy to a target evolution, and whether plasma control can be achieved through the use of separate individual control algorithms or whether a more fully integrated approach is required.
机译:为了使ITER等离子体控制系统(PCS)能够将等离子体维持在预定义的操作空间内并优化托卡马克中的等离子体状态演变,仍然需要解决许多具有挑战性的等离子体控制问题。实现ITER的目标。首先,在这项工作中,开发了一种通用的,基于控制的,基于物理学的建模方法,以获取等离子磁轮廓的第一原理驱动(FPD)模型以及对高性能,高约束(H模式)有效的存储能量演化方案,目的是开发基于模型的闭环算法,以控制安全系数曲线(q曲线)和托卡马克中存储的能量演变。通过使用DINA-CH和CRONOS自由边界托卡马克仿真代码,FPD模型适合ITER中的H模式燃烧等离子体场景,并且通过将预测与从DINA-CH&CRONOS获得的数据进行比较,证明了FPD模型的预测能力。其次,将基于模型的反馈控制算法设计为通过将开发的磁剖面演化的FPD模型嵌入控制设计过程中,同时跟踪ITER中H模式燃烧等离子体场景中的目标q剖面和存储的能量演变。反馈控制器旨在确保闭环系统对电子密度,电子温度和等离子体电阻率的不确定性具有鲁棒性,并使用开发的FPD模型在仿真中进行了测试。首先跟踪标称q分布图和存储的能量目标演变,然后调制生成的聚变功率,同时将q分布图保持在稳定状态,即可证明控制器的有效性。在此过程中,研究了ITER中血浆分布控制的许多关键实际问题,这对最近启动的ITER PCS的开发将是有用的。一些更相关的研究问题是驱动q曲线和存储的能量达到目标演变所需的时间,以及是否可以通过使用单独的单独控制算法来实现等离子体控制,或者是否需要更完全集成的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号