首页> 外文期刊>Fusion Engineering and Design >Assessment of the burning-plasma operational space in ITER by using a control-oriented core-SOL-divertor model
【24h】

Assessment of the burning-plasma operational space in ITER by using a control-oriented core-SOL-divertor model

机译:通过使用控制取向的核心 - 溶胶 - 偏移器模型评估射击中的燃烧 - 等离子体操作空间

获取原文
获取原文并翻译 | 示例
           

摘要

In future tokamaks, the control of burning plasmas will require careful regulation of the plasma density and temperature. Along with the design of effective burn-control systems, understanding how the fusion power varies in the density-temperature space is vital for the operation of fusion power plants. In this work, the steady-state operational space of ITER is studied using a control-oriented core-plasma model coupled to a two-point model of the scrape-off-layer (SOL) and divertor regions. The two models are coupled through the exchange of inputoutput parameters. The deuterium and tritium recycling from the wall are output parameters of the SOLdivertor model that are used as input parameters in the core-plasma density balance. Furthermore, the separatrix temperature, which is an output parameter of the SOL-divertor model, is incorporated into the radial coreplasma temperature profiles. Therefore, the temperature-dependent power balance of the plasma core is intimately linked to the SOL-divertor model. Both the power entering the SOL from the core, as determined by the core-plasma power balance, and the separatrix density, as dictated by the core-plasma density balance, are input parameters to the SOL-divertor model. They are control knobs in the SOL-divertor model that can be regulated using the core-plasma actuators: auxiliary power and pellet injection. There are various operational limitations, such as the saturation of the aforementioned actuators, that will prevent ITER from accessing certain high-fusion plasma regimes. The achievable tritium concentration in the fueling lines and the maximum sustainable heat load on the divertor will impose further restrictions. By accounting for these limitations, the ITER operational space is computed based on the coupled core-SOL-divertor model and visualized using Plasma Operation Contour (POPCON) plots that map performance metrics, such as the fusion to auxiliary power ratio, over the densitytemperature space. Comparisons are drawn between plasmas with different recycling, confinement, and SOLdivertor conditions.
机译:在未来的托卡马克斯,燃烧等离子体的控制需要仔细调节等离子体密度和温度。随着有效燃烧控制系统的设计,了解融合功率如何在密度温度范围内变化对于融合发电厂的运行至关重要。在这项工作中,使用耦合到刮擦层(溶胶)和转位区域的两点模型的控制导向的核心等离子体模型来研究迭代的稳态操作空间。这两种模型通过输入输出参数的交换来耦合。从墙壁回收的氘和氚是回收的Collivertor模型的输出参数,其用作核心等离子体密度平衡中的输入参数。此外,作为溶胶 - 偏移器模型的输出参数的分离缀温度纳入径向芯上的温度型材。因此,等离子体芯的温度依赖性功率平衡与溶胶 - 偏移器模型密切相关。通过核心等离子体功率平衡确定进入芯的电力,以及由核心等离子体密度平衡决定的分离rix密度,是对溶胶 - 偏移的模型的输入参数。它们是溶胶 - 偏移器模型中的控制旋钮,可以使用核心等离子体执行器来调节:辅助动力和颗粒注入。存在各种操作限制,例如上述致动器的饱和,这将防止迭代访问某些高融合等离子体制度。可实现的促进线中可实现的氚浓度和置换器上的最大可持续热负荷将施加进一步的限制。通过考虑这些限制,基于耦合的核心 - 溶胶 - 偏移器模型来计算迭代器操作空间,并使用等离子体操作轮廓(Popcon)绘图,该图映射性能度量,例如融合到辅助功率比,在密度高度空间上。在具有不同回收,限制和焊剂条件的等离子体之间绘制比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号