首页> 外文期刊>ACM Transactions on Graphics >A BSP-Based Algorithm for Dimensionally Nonhomogeneous Planar Implicit Curves with Topological Guarantees
【24h】

A BSP-Based Algorithm for Dimensionally Nonhomogeneous Planar Implicit Curves with Topological Guarantees

机译:具有拓扑保证的维非均匀平面隐式曲线的基于BSP的算法

获取原文
获取原文并翻译 | 示例

摘要

Mathematical systems (e.g., Mathematica, Maple, Matlab, and DPGraph) easily plot planar algebraic curves implicitly defined by polynomial functions. However, these systems, and most algorithms found in the literature, cannot draw many implicit curves correctly; in particular, those with singularities (self-intersections, cusps, and isolated points). They do not detect sign-invariant components either, because they use numerical methods based on the Bolzano corollary, that is, they assume that the curve-describing function f flips sign somewhere in a line segment AB that crosses the curve, or f(A). f(B) < 0. To solve these problems, we have generalized the False Position (FP) method to determine two types of zeros: (ⅰ) crossing zeros and (ⅱ) extremal zeros (local minima and maxima without function sign variation). We have called this method the Generalized False Position (GFP) method. It allows us to sample an implicit curve against the Binary Space Partitioning (BSP), say bisection lines, of a rectangular region of IK2. Interestingly, the GFP method can also be used to determine isolated points of the curve. The result is a general algorithm for sampling and rendering planar implicit curves with topological guarantees.
机译:数学系统(例如Mathematica,Maple,Matlab和DPGraph)可以轻松绘制由多项式函数隐式定义的平面代数曲线。但是,这些系统以及文献中发现的大多数算法无法正确绘制许多隐式曲线。尤其是那些具有奇异之处(自相交,尖点和孤立点)的人。他们也不检测符号不变分量,因为它们使用基于Bolzano推论的数值方法,也就是说,他们假设曲线描述函数f在与曲线相交的线段AB的某处翻转符号,或者f(A )。 f(B)<0。为解决这些问题,我们推广了虚假位置(FP)方法来确定两种类型的零:(ⅰ)穿越零和(ⅱ)极零(局部最小值和最大值,无函数符号变化) 。我们称此方法为广义错误位置(GFP)方法。它使我们能够对IK2矩形区域的二进制空间分割(BSP)(即等分线)采样隐式曲线。有趣的是,GFP方法也可以用于确定曲线的孤立点。结果是具有拓扑保证的采样和渲染平面隐式曲线的通用算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号