首页> 外文期刊>ACM Transactions on Graphics >Global Illumination with Radiance Regression Functions
【24h】

Global Illumination with Radiance Regression Functions

机译:具有照度回归功能的全局照明

获取原文
获取原文并翻译 | 示例

摘要

We present radiance regression functions for fast rendering of global illumination in scenes with dynamic local light sources. A radiance regression function (RRF) represents a non-linear mapping from local and contextual attributes of surface points, such as position, viewing direction, and lighting condition, to their indirect illumination values. The RRF is obtained from precomputed shading samples through regression analysis, which determines a function that best fits the shading data. For a given scene, the shading samples are precomputed by an offline renderer. The key idea behind our approach is to exploit the nonlinear coherence of the indirect illumination data to make the RRF both compact and fast to evaluate. We model the RRF as a multilayer acyclic feed-forward neural network, which provides a close functional approximation of the indirect illumination and can be efficiently evaluated at run time. To effectively model scenes with spatially variant material properties, we utilize an augmented set of attributes as input to the neural network RRF to reduce the amount of inference that the network needs to perform. To handle scenes with greater geometric complexity, we partition the input space of the RRF model and represent the subspaces with separate, smaller RRFs that can be evaluated more rapidly. As a result, the RRF model scales well to increasingly complex scene geometry and material variation. Because of its compactness and ease of evaluation, the RRF model enables real-time rendering with full global illumination effects, including changing caustics and multiple-bounce high-frequency glossy interreflections.
机译:我们提出了辐射回归函数,用于在具有动态局部光源的场景中快速渲染全局照明。辐射回归函数(RRF)表示从表面点的局部和上下文属性(例如位置,查看方向和照明条件)到其间接照明值的非线性映射。 RRF是通过回归分析从预先计算的阴影样本中获得的,回归分析确定了最适合阴影数据的函数。对于给定的场景,阴影样本由脱机渲染器预先计算。我们方法背后的关键思想是利用间接照明数据的非线性相干性,使RRF既紧凑又快速评估。我们将RRF建模为多层非循环前馈神经网络,该网络提供了间接照明的近似功能近似,并且可以在运行时进行有效评估。为了有效地建模具有空间变化的材质属性的场景,我们利用一组扩展的属性作为神经网络RRF的输入,以减少网络需要执行的推理量。为了处理具有更大几何复杂性的场景,我们划分了RRF模型的输入空间,并用单独的较小的RRF表示子空间,可以更快速地对其进行评估。结果,RRF模型可以很好地缩放以适应日益复杂的场景几何形状和材质变化。由于其紧凑性和易于评估的特性,RRF模型可实现具有完整全局照明效果的实时渲染,包括改变焦散和多次反射高频光泽互反射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号