首页> 外文期刊>ACM Transactions on Graphics >Real-time Shading-based Refinement for Consumer Depth Cameras
【24h】

Real-time Shading-based Refinement for Consumer Depth Cameras

机译:消费者深度相机的基于阴影的实时细化

获取原文
获取原文并翻译 | 示例

摘要

We present the first real-time method for refinement of depth datarnusing shape-from-shading in general uncontrolled scenes. Per frame,rnour real-time algorithm takes raw noisy depth data and an alignedrnRGB image as input, and approximates the time-varying incidentrnlighting, which is then used for geometry refinement. This leads torndramatically enhanced depth maps at 30Hz. Our algorithm makesrnfew scene assumptions, handling arbitrary scene objects even underrnmotion. To enable this type of real-time depth map enhancement,rnwe contribute a new highly parallel algorithm that reformulates therninverse rendering optimization problem in prior work, allowing usrnto estimate lighting and shape in a temporally coherent way at videornframe-rates. Our optimization problem is minimized using a newrnregular grid Gauss-Newton solver implemented fully on the GPU.rnWe demonstrate results showing enhanced depth maps, which arerncomparable to offline methods but are computed orders of magnitudernfaster, as well as baseline comparisons with online filtering-basedrnmethods. We conclude with applications of our higher quality depthrnmaps for improved real-time surface reconstruction and performancerncapture.
机译:我们提出了第一个实时方法,用于在一般不受控制的场景中利用阴影形状从阴影中提取深度数据。对于每帧,nour实时算法将原始的噪点深度数据和对齐的RGB图像作为输入,并近似随时间变化的入射光,然后将其用于几何图形优化。这就导致了30Hz深度地图的急剧增强。我们的算法很少假设场景,即使运动不足也能处理任意场景对象。为了实现这种类型的实时深度图增强,我们贡献了一种新的高度并行算法,该算法重新格式化了先前工作中的逆向渲染优化问题,从而允许我们以视频帧速率在时间上相干的方式估计照明和形状。我们使用完全在GPU上实现的新型规则网格高斯-牛顿求解器将优化问题最小化.rn我们演示了显示深度深度图的结果,这些深度图可以与离线方法相比,但计算速度要快几个数量级,并且可以使用基于在线过滤的方法进行基线比较。我们以更高质量的深度图的应用结束,以改善实时表面重建和性能捕获。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号