首页> 外文期刊>ACM Transactions on Graphics >Computational Video Editing for Dialogue-Driven Scenes
【24h】

Computational Video Editing for Dialogue-Driven Scenes

机译:对话驱动场景的计算视频编辑

获取原文
获取原文并翻译 | 示例

摘要

We present a system for efficiently editing video of dialogue-driven scenes. The input to our system is a standard film script and multiple video takes, each capturing a different camera framing or performance of the complete scene. Our system then automatically selects the most appropriate clip from one of the input takes, for each line of dialogue, based on a user-specified set of film-editing idioms. Our system starts by segmenting the input script into lines of dialogue and then splitting each input take into a sequence of clips time-aligned with each line. Next, it labels the script and the clips with high-level structural information (e.g., emotional sentiment of dialogue, camera framing of clip, etc.). After this pre-process, our interface others a set of basic idioms that users can combine in a variety of ways to build custom editing styles. Our system encodes each basic idiom as a Hidden Markov Model that relates editing decisions to the labels extracted in the pre- process. For short scenes (< 2 minutes, 8-16 takes, 6-27 lines of dialogue) applying the user-specified combination of idioms to the pre-processed inputs generates an edited sequence in 2-3 seconds. We show that this is significantly faster than the hours of user time skilled editors typically require to produce such edits and that the quick feedback lets users iteratively explore the space of edit designs.
机译:我们提出了一种有效编辑对话驱动场景的视频的系统。系统输入的内容是标准的电影脚本和多个视频,每个镜头捕获不同的摄像机取景或整个场景的表演。然后,我们的系统会根据用户指定的一组电影编辑习惯用法,从每一行对话中自动从输入的拍摄片段中选择最合适的剪辑。我们的系统首先将输入脚本分割成多个对话行,然后将每个输入分成与每个行在时间上对齐的剪辑序列。接下来,它使用高级结构信息(例如,对话的情感情感,剪辑的相机取景等)标记脚本和剪辑。在完成此预处理之后,我们的界面将向用户提供一系列基本的习惯用法,用户可以通过各种方式组合这些习惯用语来构建自定义编辑样式。我们的系统将每个基本成语编码为“隐马尔可夫模型”,该模型将编辑决策与预处理中提取的标签相关联。对于短场景(<2分钟,需要8-16拍,对话的6-27行),将用户指定的习惯用语组合应用于预处理的输入,会在2-3秒内生成一个已编辑的序列。我们证明,这比熟练的编辑人员通常需要花费数小时的时间来进行此类编辑要快得多,而且快速反馈使用户可以迭代地探索编辑设计的空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号