首页> 外文期刊>ACM Transactions on Computational Theory >Characterization and Lower Bounds for Branching Program Size using Projective Dimension
【24h】

Characterization and Lower Bounds for Branching Program Size using Projective Dimension

机译:使用投影维表示分支程序大小的特征和下界

获取原文
获取原文并翻译 | 示例

摘要

We study projective dimension, a graph parameter, denoted by pd(G) for a bipartite graph G, introduced by Pudlak and Rodl (1992). For a Boolean function / (on n bits), Pudlak and Rodl associated a bipartite graph G_f and showed that size of the optimal branching program computing /, denoted by bpsize(f), is at least pd(G_y) (also denoted by pd(f)). Hence, proving lower bounds for pd(f) implies lower bounds for bpsize(f). Despite several attempts (Pudlak and Rodl (1992), Ronyai et al. (2000)), proving super-linear lower bounds for projective dimension of explicit families of graphs has remained elusive. We observe that there exist a Boolean function f for which the gap between the pd(f) and bpsize(f)) is 2~(Ω(n)). Motivated by the argument in Pudlak and Rodl (1992), we define two variants of projective dimension: projective dimension with intersection dimension 1, denoted by upd(f), and bitwise decomposable projective dimension, denoted by bitpdim(f). We show the following results: (a) We observe that there exist a Boolean function f for which the gap between upd(f) and bpsize(f) is . In contrast, we also show that the bitwise decomposable projective dimension characterizes size of the branching program up to a polynomial factor. That is, there exists a constant c > 0 and for any function f, bitpdim(f)/6 ≤ bpsize(f) ≤ (bitpdim(f))~c. (b) We introduce a new candidate family of functions f for showing super-polynomial lower bounds for bitpdim(f). As our main result, for this family of functions, we demonstrate gaps between pd(f) and the above two new measures for f: pd(f) = O(√n) upd(f) = Ω(n) bitpdim(f) = Ω(n~(1.5)/log n). We adapt Nechiporuk's techniques for our linear algebraic setting to prove the best-known bpsize lower bounds for bitpdim. Motivated by this linear algebraic setting of our main result, we derive exponential lower bounds for two restricted variants of pd(f) and upd(f) by observing that they are exactly equal to well-studied graph parameters-bipartite clique cover number and bipartite partition number, respectively.
机译:我们研究了射影尺寸,这是一个图形参数,由二分图G表示为pd(G),由Pudlak和Rodl(1992)引入。对于布尔函数/(在n位上),Pudlak和Rodl关联了一个二部图G_f,并表明最优分支程序计算的大小/由bpsize(f)表示,至少为pd(G_y)(也由pd表示) (F))。因此,证明pd(f)的下界意味着bpsize(f)的下界。尽管进行了几次尝试(Pudlak和Rodl(1992),Ronyai等人(2000)),但仍然无法证明显式图族的投影维的超线性下界。我们观察到存在一个布尔函数f,其pd(f)与bpsize(f))之间的差距为2〜(Ω(n))。根据Pudlak和Rodl(1992)的观点,我们定义了投影尺寸的两个变体:相交尺寸为1的投影尺寸,由upd(f)表示;按位分解的投影尺寸,由bitpdim(f)表示。我们显示以下结果:(a)我们观察到存在一个布尔函数f,其upd(f)和bpsize(f)之间的差距为。相反,我们还表明,按位可分解的投影维数表征了分支程序的大小,直至多项式因子为止。也就是说,存在一个常数c> 0,并且对于任何函数f,bitpdim(f)/ 6≤bpsize(f)≤(bitpdim(f))〜c。 (b)我们引入了一个新的候选函数f系列,以显示bitpdim(f)的超多项式下界。作为我们的主要结果,对于该函数系列,我们证明了pd(f)与上述两个新的f度量之间的差距:pd(f)= O(√n)upd(f)=Ω(n)bitpdim(f )=Ω(n〜(1.5)/ log n)。我们将Nechiporuk的技术用于线性代数设置,以证明最著名的bitpdim bpsize下界。受此主要结果的线性代数设置的启发,我们观察到pd(f)和upd(f)的两个受限变体与经过充分研究的图参数(二分集团覆盖数和二分之一)完全相等,从而得出指数下界分区号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号