首页> 外文期刊>ACM transactions on computation theory >Characterization and Lower Bounds for Branching Program Size using Projective Dimension
【24h】

Characterization and Lower Bounds for Branching Program Size using Projective Dimension

机译:使用投影维度的分支节目尺寸的表征和下限

获取原文
获取原文并翻译 | 示例

摘要

We study projective dimension, a graph parameter, denoted by pd(G) for a bipartite graph G, introduced by Pudlak and Rodl (1992). For a Boolean function / (on n bits), Pudlak and Rodl associated a bipartite graph G_f and showed that size of the optimal branching program computing /, denoted by bpsize(f), is at least pd(G_y) (also denoted by pd(f)). Hence, proving lower bounds for pd(f) implies lower bounds for bpsize(f). Despite several attempts (Pudlak and Rodl (1992), Ronyai et al. (2000)), proving super-linear lower bounds for projective dimension of explicit families of graphs has remained elusive. We observe that there exist a Boolean function f for which the gap between the pd(f) and bpsize(f)) is 2~(Ω(n)). Motivated by the argument in Pudlak and Rodl (1992), we define two variants of projective dimension: projective dimension with intersection dimension 1, denoted by upd(f), and bitwise decomposable projective dimension, denoted by bitpdim(f). We show the following results: (a) We observe that there exist a Boolean function f for which the gap between upd(f) and bpsize(f) is . In contrast, we also show that the bitwise decomposable projective dimension characterizes size of the branching program up to a polynomial factor. That is, there exists a constant c > 0 and for any function f, bitpdim(f)/6 ≤ bpsize(f) ≤ (bitpdim(f))~c. (b) We introduce a new candidate family of functions f for showing super-polynomial lower bounds for bitpdim(f). As our main result, for this family of functions, we demonstrate gaps between pd(f) and the above two new measures for f: pd(f) = O(√n) upd(f) = Ω(n) bitpdim(f) = Ω(n~(1.5)/log n). We adapt Nechiporuk's techniques for our linear algebraic setting to prove the best-known bpsize lower bounds for bitpdim. Motivated by this linear algebraic setting of our main result, we derive exponential lower bounds for two restricted variants of pd(f) and upd(f) by observing that they are exactly equal to well-studied graph parameters-bipartite clique cover number and bipartite partition number, respectively.
机译:我们研究Pudlak和Rodl(1992)引入的PD(G)所用PD(g)表示的图表参数。对于布尔函数/(在N比特上),Pudlak和Rodl相关联的二分曲线图G_F,并显示了最佳分支程序计算/,由Bpsize(F)表示的尺寸至少是PD(G_Y)(也由PD表示(F))。因此,证明PD(F)的下界意味着Bpsize(F)的下界。尽管有几次尝试(Pudlak和Rodl(1992),Ronyai等),但是,对图解的明确家庭的投影维度的超线性下限仍然难以捉摸。我们观察到,存在一个布尔函数f,其PD(F)和Bpsize(F)之间的间隙为2〜(ω(n))。由Pudlak和Rodl(1992)中的参数激励,我们定义了突出尺寸的两个变体:带有交叉点尺寸1的投影尺寸,由UPD(f)和按位分解的投影尺寸表示,由BitPDIM(F)表示。我们展示以下结果:(a)我们观察到有一个布尔函数f,其中up​​d(f)和bpsize(f)之间的间隙是。相比之下,我们还表明,按位分解的投影尺寸表征了分支程序的大小,直到多项式因素。也就是说,存在常数C> 0,并且对于任何功能f,位斑(f)/6≤bpsize(f)≤(bitpdim(f))~c。 (b)我们介绍了一个新的候选族族,用于为位pdim(f)表示超多项式下限。作为我们的主要结果,对于这家功能,我们展示了PD(F)之间的差距以及以上的F:Pd(F)= O(√N)upd(f)=ω(n)位pd pdim(f )=ω(n〜(1.5)/ log n)。我们适应Nechiporuk的线性代数设置的技术,以证明Bitpdim的最着名的Bpsize下限。通过这种线性代数设置的主要结果,我们通过观察到它们与学习良好的图表参数 - 双链Clique盖数和二分钟来派生PD(F)和UP(F)的两个受限制变体的指数下限。分别分配号码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号