首页> 外文期刊>ACM transactions on computational logic >Uniqueness of Normal Forms for Shallow Term Rewrite Systems
【24h】

Uniqueness of Normal Forms for Shallow Term Rewrite Systems

机译:浅术语重写系统的范式的唯一性

获取原文
获取原文并翻译 | 示例

摘要

Uniqueness of normal forms (UN=) is an important property of term rewrite systems. UN= is decidable for ground (i.e., variable-free) systems and undecidable in general. Recently, it was shown to be decidable for linear, shallow systems. We generalize this previous result and show that this property is decidable for shallow rewrite systems, in contrast to confluence, reachability, and other related properties, which are all undecidable for flat systems. We also prove an upper bound on the complexity of our algorithm. Our decidability result is optimal in a sense, since we prove that the UN= property is undecidable for two classes of linear rewrite systems: left-flat systems in which right-hand sides are of height at most two and right-flat systems in which left-hand sides are of height at most two.
机译:范式的唯一性(UN =)是术语重写系统的重要属性。对于地面系统(即无变量),UN =是可确定的,而在总体上,UN =是不可确定的。最近,它被证明对于线性浅层系统是可判定的。我们对先前的结果进行了概括,并表明该特性对于浅层重写系统是可决定的,而合流,可及性和其他相关特性则相对于扁平系统而言是不可决定的。我们还证明了算法复杂性的上限。从某种意义上说,我们的可判定性结果是最优的,因为我们证明了对于两类线性重写系统而言,UN =属性是不可判定的:左手边的系统最多可以有两个高度,而右手边的系统最多可以有两个高度。左侧最多两个高度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号