首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification
【24h】

Word Reordering for Translation into Korean Sign Language Using Syntactically-guided Classification

机译:使用语法引导分类重新排序转换为韩语手语

获取原文
获取原文并翻译 | 示例

摘要

Machine translation aims to break the language barrier that prevents communication with others and increase access to information. Deaf people face huge language barriers in their daily lives, including access to digital and spoken information. There are very few digital resources for sign language processing. In this article, we present a transfer-based machine translation system for translating Korean-to-Korean Sign Language (KSL) glosses, mainly composed of (1) dictionary-based lexical transfer and (2) a hybrid syntactic transfer based on a data-driven model. In particular, we formulate complicated word reordering problems in syntactic transfer as multi-class classification tasks and propose "syntactically guided" data-driven syntactic transfer. The core part of our study is a neural classification model for reordering order-important constituent pairs with a reordering task that is newly designed for Korean-to-KSL translation. The experiment results evaluated on news transcript data show that the proposed system achieves a BLEU score of 0.512 and a RIBES score of 0.425, significantly improving upon the baseline system performance.
机译:机器翻译旨在打破防止与他人通信并增加信息的语言障碍。聋人在日常生活中面临着巨大的语言障碍,包括获得数字和口头信息。标志语言处理的数字资源很少。在本文中,我们介绍了一种基于转移的机器翻译系统,用于翻译韩语手语(KSL)光泽,主要由(1)基于词典的词汇转移和(2)基于数据的混合语法传输组成 - 驱动的模型。特别是,我们在句法转移中配制复杂的单词重新排序问题作为多级分类任务,并提出“句法引导”数据驱动的句法传输。我们研究的核心部分是用于重新排序的神经分类模型,用于重新排序 - 重要的组成对具有重新排序的任务,该对任务是新设计用于韩语-PSL翻译的。在新闻发证人数据中评估的实验结果表明,该拟议的系统实现了0.512的BLEU得分和9.225的RIBES得分,显着提高了基线系统性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号