首页> 外文期刊>ACM Computing Surveys >Software Vulnerability Analysis and Discovery Using Machine-Learning and Data-Mining Techniques: A Survey
【24h】

Software Vulnerability Analysis and Discovery Using Machine-Learning and Data-Mining Techniques: A Survey

机译:使用机器学习和数据挖掘技术的软件漏洞分析和发现:一项调查

获取原文
获取原文并翻译 | 示例

摘要

Software security vulnerabilities are one of the critical issues in the realm of computer security. Due to their potential high severity impacts, many different approaches have been proposed in the past decades to mitigate the damages of software vulnerabilities. Machine-learning and data-mining techniques are also among the many approaches to address this issue. In this article, we provide an extensive review of the many different works in the field of software vulnerability analysis and discovery that utilize machine-learning and data-mining techniques. We review different categories of works in this domain, discuss both advantages and shortcomings, and point out challenges and some uncharted territories in the field.
机译:软件安全漏洞是计算机安全领域中的关键问题之一。由于其潜在的严重性严重影响,在过去的几十年中提出了许多不同的方法来减轻软件漏洞的破坏。机器学习和数据挖掘技术也是解决此问题的许多方法之一。在本文中,我们对使用机器学习和数据挖掘技术的软件漏洞分析和发现领域中的许多不同工作进行了广泛的回顾。我们回顾了该领域中的不同类别的作品,讨论了优点和缺点,并指出了该领域中的挑战和一些未知领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号