首页> 外文期刊>ACM Computing Surveys >Recommender Systems Leveraging Multimedia Content
【24h】

Recommender Systems Leveraging Multimedia Content

机译:推荐系统利用多媒体内容

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems have become a popular and effective means to manage the ever-increasing amount of multimedia content available today and to help users discover interesting new items. Today's reconunender systems suggest items of various media types, including audio, text, visual (images), and videos. In fact, scientific research related to the analysis of multimedia content has made possible effective content-based recommender systems capable of suggesting items based on an analysis of the features extracted from the item itself. The aim of this survey is to present a thorough review of the state-of-the-art of recommender systems that leverage multimedia content, by classifying the reviewed papers with respect to their media type, the techniques employed to extract and represent their content features, and the recommendation algorithm. Moreover, for each media type, we discuss various domains in which multimedia content plays a key role in human decision-making and is therefore considered in the recommendation process. Examples of the identified domains include fashion, tourism, food, media streaming, and e-commerce.
机译:推荐系统已成为管理今天可用的多媒体内容的不断增长的多媒体内容,并帮助用户发现有趣的新项目。今天的重新调整系统建议各种媒体类型的项目,包括音频,文本,视觉(图像)和视频。事实上,与多媒体内容分析有关的科学研究使得基于有效的内容的推荐系统能够根据从项目本身提取的特征的分析来建议项目。本调查的目的是通过对其媒体类型分类,彻底审查利用多媒体内容的推荐系统的最先进的审查,该技术用于提取和代表其内容特征的技术和推荐算法。此外,对于每个媒体类型,我们讨论多媒体内容在人为决策中发挥关键作用的各个域,因此在推荐过程中考虑。所识别的域的例子包括时尚,旅游,食品,媒体流和电子商务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号