首页> 外文期刊>Scientific programming >Leveraging Image Visual Features in Content-Based Recommender System
【24h】

Leveraging Image Visual Features in Content-Based Recommender System

机译:在基于内容的推荐系统中利用图像视觉功能

获取原文
获取原文并翻译 | 示例

摘要

Content-based (CB) and collaborative filtering (CF) recommendation algorithms are widely used in modern e-commerce recommender systems (RSs) to improve user experience of personalized services. Item content features and user-item rating data are primarily used to train the recommendation model. However, sparse data would lead such systems unreliable. To solve the data sparsity problem, we consider that more latent information would be imported to catch users' potential preferences. Therefore, hybrid features which include all kinds of item features are used to excavate users' interests. In particular, we find that the image visual features can catch more potential preferences of users. In this paper, we leverage the combination of user-item rating data and item hybrid features to propose a novel CB recommendation model, which is suitable for rating-based recommender scenarios. The experimental results show that the proposed model has better recommendation performance in sparse data scenarios than conventional approaches. Besides, training offline and recommendation online make the model has higher efficiency on large datasets.
机译:基于内容的(CB)和协作过滤(CF)推荐算法已广泛用于现代电子商务推荐器系统(RS)中,以改善个性化服务的用户体验。项目内容功能和用户项目评级数据主要用于训练推荐模型。但是,稀疏的数据将导致此类系统不可靠。为了解决数据稀疏性问题,我们认为将导入更多潜在信息以捕获用户的潜在偏好。因此,包括各种项目特征的混合特征被用来挖掘用户的兴趣。特别地,我们发现图像视觉特征可以捕捉到用户的更多潜在偏好。在本文中,我们利用用户项目评分数据和项目混合功能的组合,提出了一种新颖的CB推荐模型,该模型适用于基于评分的推荐方案。实验结果表明,与传统方法相比,该模型在稀疏数据场景下具有更好的推荐性能。此外,离线训练和在线推荐使模型在大型数据集上具有更高的效率。

著录项

  • 来源
    《Scientific programming》 |2018年第2期|5497070.1-5497070.8|共8页
  • 作者单位

    Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China;

    Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China;

  • 收录信息 美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号