首页> 外文期刊>ACM SIGIR FORUM >Information Retrieval Meets Game Theory: The Ranking Competition Between Documents’ Authors
【24h】

Information Retrieval Meets Game Theory: The Ranking Competition Between Documents’ Authors

机译:信息检索符合博弈论:文档作者之间的排名竞争

获取原文
获取原文并翻译 | 示例

摘要

In competitive search seŠings as theWeb, there is an ongoing rankingrncompetition between document authors (publishers) for certainrnqueries. Œe goal is to have documents highly ranked, and thernmeans is document manipulation applied in response to rankings.rnExisting retrieval models, and their theoretical underpinnings (e.g.,rnthe probability ranking principle), do not account for post-rankingrncorpus dynamics driven by this strategic behavior of publishers.rnHowever, the dynamics has major e‚ect on retrieval e‚ectivenessrnsince it a‚ects content availability in the corpus. Furthermore, whilernmanipulation strategies observed over the Web were reported inrnpast literature, they were not analyzed as ongoing, and changing,rnpost-ranking response strategies, nor were they connected to thernfoundations of classical ad hoc retrieval models (e.g., content-basedrndocument-query surface level similarities and document relevancernpriors). We present a novel theoretical and empirical analysis of thernstrategic behavior of publishers using these foundations. Empiricalrnanalysis of controlled ranking competitions that we organizedrnreveals a key strategy of publishers: making their documents (gradually)rnbecome similar to documents ranked the highest in previousrnrankings. Our theoretical analysis of the ranking competition as arnrepeated game, and its minmax regret equilibrium, yields a result thatrnsupports the merits of this publishing strategy. We further showrnthat it can be predicted with high accuracy, and without explicitrnknowledge of the ranking function, whether documents will bernpromoted to the highest rank in our competitions. ThŒe predictionrnutilizes very few features which quantify changes of documents,rnspeci€cally with respect to those previously ranked the highest.
机译:在像Web这样的竞争性搜索中,对于某些查询,文档作者(发布者)之间正在进行持续的排名竞争。我们的目标是使文档具有较高的排名,而其含义是对排名进行响应而应用文档操作。rn现有的检索模型及其理论基础(例如,概率排名原则)不考虑这种战略驱动的语料库动态发布者的行为。然而,动力学对检索的有效性有重要影响,因为它影响语料库中的内容可用性。此外,尽管在网络上观察到的操纵策略在过去的文献中已有报道,但并未将其作为进行中的,不断变化的,排名后的响应策略进行分析,也未与经典的临时检索模型的基础(例如,基于内容的rn文档查询表面)相关联级别的相似性和文档相关性-先决条件)。我们提出了使用这些基础的出版商战略行为的新型理论和实证分析。我们组织的可控制排名竞赛的经验分析揭示了发布者的一项关键策略:使他们的文档(逐渐)变得与先前排名中排名最高的文档相似。我们对无竞争博弈的排名竞争及其最小最大后悔均衡的理论分析得出了支持这种发布策略优点的结果。我们进一步证明,在没有明确知道排名函数的情况下,可以准确预测该文件是否会被提升到我们比赛的最高排名。预测很少使用量化文档更改的功能,特别是相对于以前排名最高的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号