首页> 外文期刊>ACM SIGIR FORUM >Learning Max-Margin GeoSocial Multimedia Network Representations for Point-of-Interest Suggestion
【24h】

Learning Max-Margin GeoSocial Multimedia Network Representations for Point-of-Interest Suggestion

机译:学习最大利润的GeoSocial多媒体网络表示形式以获取兴趣点建议

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of mobile devices, point-of-interestrn(POI) suggestion has become a popular online web service, whichrnprovides attractive and interesting locations to users. In order to providerninteresting POIs, many existing POI recommendation worksrnlearn the latent representations of users and POIs from users’ pastrnvisiting POIs, which suffers from the sparsity problem of POI data.rnIn this paper, we consider the problem of POI suggestion from thernviewpoint of learning geosocial multimedia network representations.rnWe propose a novel max-margin metric geosocial multimediarnnetwork representation learning framework by exploiting users’rncheck-in behavior and their social relations. We then develop arnrandom-walk based learning method with max-margin metric networkrnembedding. We evaluate the performance of our method on arnlarge-scale geosocial multimedia network dataset and show that ourrnmethod achieves the best performance than other state-of-the-artrnsolutions.
机译:随着移动设备的快速发展,兴趣点(POI)的建议已成为一种流行的在线Web服务,它为用户提供了吸引人和有趣的位置。为了提供有趣的POI,许多现有的POI推荐工作都从用户过去访问POI的过程中学习用户和POI的潜在表示,这受到了POI数据稀疏问题的困扰。本文从学习地社会学的角度来考虑POI建议的问题。我们通过利用用户的签到行为及其社会关系,提出了一种新颖的最大利润率度量社会网络多媒体网络表示学习框架。然后,我们使用最大利润度量网络rnemdding来开发基于arnrandom-walk的学习方法。我们评估了我们的方法在超大规模地理社交多媒体网络数据集上的性能,并表明我们的方法比其他最新解决方案具有最佳的性能。

著录项

  • 来源
    《ACM SIGIR FORUM》 |2017年第cd期|833-836|共4页
  • 作者单位

    College of Computer Science, Zhejiang University, China;

    College of Computer Science, Zhejiang University, China;

    College of Computer Science, Zhejiang University, China;

    Tencent AI Lab, Shenzhen, China;

    College of Computer Science, Zhejiang University, China;

    College of Computer Science, Zhejiang University, China;

    College of Computer Science, Zhejiang University, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    POI suggestion; network representation;

    机译:POI建议;网络表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号