首页> 美国卫生研究院文献>Springer Open Choice >Molecular Mechanisms Underlying the Circadian Rhythm of Blood Pressure in Normotensive Subjects
【2h】

Molecular Mechanisms Underlying the Circadian Rhythm of Blood Pressure in Normotensive Subjects

机译:血压正常人血压昼夜节律的分子机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuroanatomical network involved in the CR of BP. RHT: the retinohypothalamic tract (RHT) originates in the intrinsically photosensitive retinal ganglion cells (ipRGC) which project directly via monosynaptic and glutamatergic transmission to the ventrolateral SCN through the optic nerve and the optic chiasma. ipRGC relay photic information from the eyes to the SCN. SCN: the suprachiasmatic nucleus (SCN) receives glutamatergic neurons from both RHT and nucleus tractus solitarius (NTS). SCN projects glutamatergic pre-autonomic parasympathetic neurons to the PVN. Separate pre-autonomic sympathetic or parasympathetic neurons project to pre-autonomic neurons of the PVN. PVN: paraventricular nucleus (PVN) receives pre-autonomic sympathetic and parasympathetic neurons from the SCN. PVN projects pre-ganglionic sympathetic neurons in the IML. Moreover, pre-autonomic sympathetic neurons in the PVN present axon collaterals to pre-autonomic parasympathetic neurons in the PVN itself and to the NTS [ •, ]. NTS: nucleus tractus solitarius (NTS) which is located in the brainstem receives neuronal informations from the aortic and carotid baroreceptors which are stimulated after a rapid increase in BP. The carotid sinus baroreceptor axons travel within the glossopharyngeal nerve. The aortic arch baroreceptor axons travel within the vagal nerve. Baroreceptor activity travels along these nerves directly to the NTS. Then, the neuronal activity flows from NTS to both parasympathetic and sympathetic neurons within the brainstem. The NTS neurons send glutamatergic excitatory fibers to the caudal ventrolateral medulla (CVLM). The GABAergic activated CVLM then sends inhibitory fibers to the rostral ventrolateral medulla (RVLM), thus inhibiting the RVLM. The sympathetic and parasympathetic branches of the autonomic nervous system have opposite effects on BP. When the aortic and carotid baroreceptors are activated by an increase in BP, NTS activates CVLM, which in turn inhibits the RVLM. This decreases the activity of the sympathetic branch of the autonomic nervous system, leading to a decrease in BP. Conversely, a decrease in BP decreases baroreceptor activation and induces an increase in sympathetic tone via “disinhibition” of the RVLM. CVLM: caudal ventrolateral medulla (CVLM) The ventrolateral medulla consists of the caudal ventrolateral medulla (CVLM) and the rostral ventrolateral medulla (RVLM) The ventrolateral medulla, part of the medulla oblongata of the brainstem, plays a major role in regulating arterial BP. CVLM receives neurons from the NTS and projects GABA fibers towards RVLM, which in turn inhibits the activity of the RVLM. RVLM: rostral ventrolateral medulla (RVLM). Neurons in the RVLM project directly to pre-ganglionic neurons in the spinal cord (intermediolateral nucleus: IML) which maintain tonic activity of the sympathetic vasomotor nerves. The RVLM is the primary regulator of the sympathetic nervous system, sending glutamatergic excitatory fibers to the sympathetic pre-ganglionic neurons located in the IML of the spinal cord. IML: the intermediolateral nucleus (IML) is located in the lateral grey column of the spinal cord and mediates the entire sympathetic innervation of the body. It receives neurons from the RVLM. nAmb: the nucleus ambiguus (nAmb) is located in the medullary reticular formation and gives rise to efferent motor fibers of the vagal nerve (CN X). These fibers are cardio-inhibitory allowing rapid BP changes in response to fast increases in BP. The parasympathetic outflow arising from nAmb acts to decrease cardiac activity in response to fast increases in BP. nAmb receives fibers from NTS. Symbols: Σ; sympathetic (red); pΣ: parasympathetic (blue); G: glutamatergic neurons
机译:BP的CR涉及神经解剖网络。 RHT:视网膜下丘脑束(RHT)起源于内在光敏性视网膜神经节细胞(ipRGC),其直接通过单突触和谷氨酸能传递通过视神经和视神经向腹侧SCN投射。 ipRGC将光信号从眼睛传递到SCN。 SCN:视交叉上核(SCN)从RHT和孤束核(NTS)接收谷氨酸能神经元。 SCN将谷氨酸能的前自主神经副交感神经元投射到PVN。单独的自主神经元前交感神经或副交感神经元投射到PVN的神经元前神经元。 PVN:脑室旁核(PVN)从SCN接收自主神经交感神经和副交感神经。 PVN在IML中投射神经节前交感神经元。此外,PVN中的自主神经前交感神经元与PVN自身的前自主神经副交感神经元以及NTS呈轴突侧支。 NTS:位于脑干中的孤束核(NTS)从主动脉和颈动脉压力感受器接收神经元信息,这些信息在BP迅速增加后受到刺激。颈窦压力感受器轴突在舌咽神经内移动。主动脉弓压力感受器轴突在迷走神经内移动。压力感受器活动沿着这些神经直接传播到NTS。然后,神经元活动从NTS流向脑干内的副交感神经和交感神经。 NTS神经元将谷氨酸能兴奋性纤维发送至尾腹侧延髓(CVLM)。然后,由GABA激活的CVLM将抑制性纤维发送至鼻侧腹外侧延髓(RVLM),从而抑制RVLM。自主神经系统的交感神经和副交感神经对血压有相反的影响。当主动脉和颈动脉压力感受器被BP激活时,NTS会激活CVLM,从而抑制RVLM。这降低了自主神经系统交感神经分支的活动,导致血压降低。相反,BP的降低会降低压力感受器的激活,并通过RVLM的“抑制”而引起交感神经张力的增加。 CVLM:尾侧腹侧延髓(CVLM)腹侧延髓由尾侧腹外侧延髓(CVLM)和延髓性腹侧延髓(RVLM)构成。 CVLM从NTS接收神经元并将GABA纤维投射到RVLM,这反过来又抑制了RVLM的活性。 RVLM:延髓腹侧延髓(RVLM)。 RVLM中的神经元直接投射到脊髓中的神经节前神经元(中间外侧核:IML),这些神经元维持交感性血管舒缩神经的强直性活动。 RVLM是交感神经系统的主要调节剂,它将谷氨酸能的兴奋性纤维发送到位于脊髓IML中的交感神经节前神经元。 IML:中间外侧核(IML)位于脊髓的外侧灰色柱中,并介导身体的整个交感神经。它从RVLM接收神经元。 nAmb:核比核(nAmb)位于延髓网状结构中,并引起迷走神经的传出运动纤维(CN X)。这些纤维具有心脏抑制作用,可以响应于BP的快速增加而使BP快速变化。 nAmb引起的副交感神经外流可响应BP的快速升高而降低心脏活动。 nAmb从NTS接收光纤。符号:Σ;同情的(红色); pΣ:副交感神经(蓝色); G:谷氨酸能神经元

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号