首页> 美国卫生研究院文献>Springer Open Choice >Semi-automated non-target processing in GC × GC–MS metabolomics analysis: applicability for biomedical studies
【2h】

Semi-automated non-target processing in GC × GC–MS metabolomics analysis: applicability for biomedical studies

机译:GC×GC-MS代谢组学分析中的半自动化非靶标处理:适用于生物医学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to the complexity of typical metabolomics samples and the many steps required to obtain quantitative data in GC × GC–MS consisting of deconvolution, peak picking, peak merging, and integration, the unbiased non-target quantification of GC × GC–MS data still poses a major challenge in metabolomics analysis. The feasibility of using commercially available software for non-target processing of GC × GC–MS data was assessed. For this purpose a set of mouse liver samples (24 study samples and five quality control (QC) samples prepared from the study samples) were measured with GC × GC–MS and GC–MS to study the development and progression of insulin resistance, a primary characteristic of diabetes type 2. A total of 170 and 691 peaks were quantified in, respectively, the GC–MS and GC × GC–MS data for all study and QC samples. The quantitative results for the QC samples were compared to assess the quality of semi-automated GC × GC–MS processing compared to targeted GC–MS processing which involved time-consuming manual correction of all wrongly integrated metabolites and was considered as golden standard. The relative standard deviations (RSDs) obtained with GC × GC–MS were somewhat higher than with GC–MS, due to less accurate processing. Still, the biological information in the study samples was preserved and the added value of GC × GC–MS was demonstrated; many additional candidate biomarkers were found with GC × GC–MS compared to GC–MS.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-010-0219-6) contains supplementary material, which is available to authorized users.
机译:由于典型的代谢组学样品的复杂性以及在GC×GC-MS中获得定量数据所需的许多步骤(包括反卷积,峰选择,峰合并和积分),GC×GC-MS数据的无偏非目标定量仍然存在在代谢组学分析中提出了重大挑战。评估了使用市售软件对GC×GC-MS数据进行非目标处理的可行性。为此,用GC×GC-MS和GC-MS测量了一组小鼠肝脏样品(24个研究样品和五个由研究样品制备的质量控制(QC)样品),以研究胰岛素抵抗的发生和发展。 2型糖尿病的主要特征。在所有研究和QC样品的GC-MS和GC×GC-MS数据中分别量化了170和691个峰。比较QC样品的定量结果,以评估半自动GC×GC-MS处理与目标GC-MS处理相比的质量,后者涉及耗时的人工校正所有错误整合的代谢产物,被认为是黄金标准。由于处理精度较差,GC×GC-MS获得的相对标准偏差(RSD)略高于GC-MS。仍然保留了研究样品中的生物学信息,并证明了GC×GC-MS的附加值;与GC-MS相比,GC×GC-MS还发现了许多其他候选生物标记。电子补充材料本文的在线版本(doi:10.1007 / s11306-010-0219-6)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号