首页> 美国卫生研究院文献>Springer Open Choice >A novel hybrid-maximum neural network in stereo-matching process
【2h】

A novel hybrid-maximum neural network in stereo-matching process

机译:立体匹配过程中的新型混合极大神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the present paper, the completely innovative architecture of artificial neural network based on Hopfield structure for solving a stereo-matching problem—hybrid neural network, consisting of the classical analog Hopfield neural network and the Maximum Neural Network—is described. The application of this kind of structure as a part of assistive device for visually impaired individuals is considered. The role of the analog Hopfield network is to find the attraction area of the global minimum, whereas Maximum Neural Network is finding accurate location of this minimum. The network presented here is characterized by an extremely high rate of work performance with the same accuracy as a classical Hopfield-like network, which makes it possible to use this kind of structure as a part of systems working in real time. The network considered here underwent experimental tests with the use of real stereo pictures as well as simulated stereo images. This enables error calculation and direct comparison with the classic analog Hopfield neural network as well as other networks proposed in the literature.
机译:在本文中,描述了一种基于Hopfield结构的完全创新的人工神经网络架构,用于解决立体匹配问题-混合神经网络,它由经典的模拟Hopfield神经网络和最大神经网络组成。考虑了这种结构作为视力障碍者辅助设备的一部分的应用。模拟Hopfield网络的作用是找到全局最小值的吸引区域,而最大神经网络则在寻找该最小值的精确位置。这里介绍的网络的特点是具有极高的工作效率,并且具有与经典Hopfield式网络相同的准确性,这使得将这种结构用作实时工作系统的一部分成为可能。这里考虑的网络使用真实的立体图片以及模拟的立体图片进行了实验测试。这使得误差计算和与经典的模拟Hopfield神经网络以及文献中提出的其他网络的直接比较成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号