首页> 美国卫生研究院文献>Springer Open Choice >Applications of node-based resilience graph theoretic framework to clustering autism spectrum disorders phenotypes
【2h】

Applications of node-based resilience graph theoretic framework to clustering autism spectrum disorders phenotypes

机译:基于节点的弹性图理论框架在自闭症谱系表型聚类中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the growing ubiquity of data in network form, clustering in the context of a network, represented as a graph, has become increasingly important. Clustering is a very useful data exploratory machine learning tool that allows us to make better sense of heterogeneous data by grouping data with similar attributes based on some criteria. This paper investigates the application of a novel graph theoretic clustering method, Node-Based Resilience clustering (NBR-Clust), to address the heterogeneity of Autism Spectrum Disorder (ASD) and identify meaningful subgroups. The hypothesis is that analysis of these subgroups would reveal relevant biomarkers that would provide a better understanding of ASD phenotypic heterogeneity useful for further ASD studies. We address appropriate graph constructions suited for representing the ASD phenotype data. The sample population is drawn from a very large rigorous dataset: Simons Simplex Collection (SSC). Analysis of the results performed using graph quality measures, internal cluster validation measures, and clinical analysis outcome demonstrate the potential usefulness of resilience measure clustering for biomedical datasets. We also conduct feature extraction analysis to characterize relevant biomarkers that delineate the resulting subgroups. The optimal results obtained favored predominantly a 5-cluster configuration.Electronic supplementary materialThe online version of this article (10.1007/s41109-018-0093-0) contains supplementary material, which is available to authorized users.
机译:随着网络形式数据的日益普及,以图表示的网络环境中的群集变得越来越重要。聚类是一个非常有用的数据探索性机器学习工具,它使我们可以通过基于某些准则将具有相似属性的数据分组来更好地理解异构数据。本文研究了一种新颖的图论聚类方法,即基于节点的弹性聚类(NBR-Clust),以解决自闭症谱系障碍(ASD)的异质性并确定有意义的子组。假设是,对这些亚组的分析将揭示相关的生物标记,这些标记将提供对ASD表型异质性的更好理解,可用于进一步的ASD研究。我们针对适合表示ASD表型数据的图结构进行了介绍。样本人口来自一个非常严格的数据集:Simons Simplex Collection(SSC)。使用图形质量度量,内部聚类验证度量和临床分析结果执行的结果分析表明,回弹度量聚类对于生物医学数据集具有潜在的实用性。我们还进行特征提取分析,以表征描述最终亚组的相关生物标记。获得的最佳结果主要是5群集配置。电子补充材料本文的在线版本(10.1007 / s41109-018-0093-0)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号