class='kwd-title'>Keywords: Cardiac hemodynamics'/> A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data
【2h】

A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data

机译:一种从无创成像数据个性化模拟心室血流动力学的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="kwd-title">Keywords: Cardiac hemodynamics, Personalized computational modeling, 3D blood flow reconstruction, B-Mode and Color Doppler echocardiography, PC-MRI class="head no_bottom_margin" id="abs0015title">AbstractCurrent state-of-the-art imaging techniques can provide quantitative information to characterize ventricular function within the limits of the spatiotemporal resolution achievable in a realistic acquisition time. These imaging data can be used to personalize computer models, which in turn can help treatment planning by quantifying biomarkers that cannot be directly imaged, such as flow energy, shear stress and pressure gradients. To date, computer models have typically relied on invasive pressure measurements to be made patient-specific. When these data are not available, the scope and validity of the models are limited. To address this problem, we propose a new methodology for modeling patient-specific hemodynamics based exclusively on noninvasive velocity and anatomical data from 3D+t echocardiography or Magnetic Resonance Imaging (MRI). Numerical simulations of the cardiac cycle are driven by the image-derived velocities prescribed at the model boundaries using a penalty method that recovers a physical solution by minimizing the energy imparted to the system. This numerical approach circumvents the mathematical challenges due to the poor conditioning that arises from the imposition of boundary conditions on velocity only. We demonstrate that through this technique we are able to reconstruct given flow fields using Dirichlet only conditions. We also perform a sensitivity analysis to investigate the accuracy of this approach for different images with varying spatiotemporal resolution. Finally, we examine the influence of noise on the computed result, showing robustness to unbiased noise with an average error in the simulated velocity approximately 7% for a typical voxel size of 2 mm3 and temporal resolution of 30 ms. The methodology is eventually applied to a patient case to highlight the potential for a direct clinical translation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ kwd-title”>关键字:心脏血液动力学,个性化计算模型,3D血流重建,B型和彩色多普勒超声心动图,PC -MRI class =“ head no_bottom_margin” id =“ abs0015title”>摘要当前最先进的成像技术可以提供定量信息,以在现实中可实现的时空分辨率范围内表征心室功能采集时间。这些成像数据可用于个性化计算机模型,进而通过量化无法直接成像的生物标志物(例如流能,剪切应力和压力梯度)来帮助制定治疗计划。迄今为止,计算机模型通常依赖于侵入性压力测量来针对患者而定。当这些数据不可用时,模型的范围和有效性将受到限制。为了解决这个问题,我们提出了一种新的方法,专门用于基于3D + t超声心动图或磁共振成像(MRI)的无创速度和解剖学数据对特定患者的血液动力学建模。心律周期的数值模拟是由模型边界处规定的图像速度驱动的,该速度使用惩罚方法,该方法通过最小化传递给系统的能量来恢复物理解。由于仅将边界条件强加于速度而导致的不良条件,因此这种数值方法可绕开数学难题。我们证明了通过这种技术,我们能够使用仅Dirichlet条件重建给定的流场。我们还进行了敏感性分析,以研究这种方法对于具有不同时空分辨率的不同图像的准确性。最后,我们检查了噪声对计算结果的影响,显示了对无偏噪声的鲁棒性,对于2mm 3 的典型体素大小和30的时间分辨率,模拟速度的平均误差约为7%多发性硬化症。该方法最终应用于患者病例,以突出直接临床翻译的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号