...
首页> 外文期刊>Computerized Medical Imaging and Graphics: The Official Jounal of the Computerized Medical Imaging Society >A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data
【24h】

A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data

机译:从无创成像数据个性化模拟心室血流动力学的新方法

获取原文
获取原文并翻译 | 示例
           

摘要

Current state-of-the-art imaging techniques can provide quantitative information to characterize ventricular function within the limits of the spatiotemporal resolution achievable in a realistic acquisition time. These imaging data can be used to personalize computer models, which in turn can help treatment planning by quantifying biomarkers that cannot be directly imaged, such as flow energy, shear stress and pressure gradients. To date, computer models have typically relied on invasive pressure measurements to be made patient-specific. When these data are not available, the scope and validity of the models are limited. To address this problem, we propose a new methodology for modeling patient-specific hemodynamics based exclusively on noninvasive velocity and anatomical data from 3D+t echocardiography or Magnetic Resonance Imaging (MRI). Numerical simulations of the cardiac cycle are driven by the image derived velocities prescribed at the model boundaries using a penalty method that recovers a physical solution by minimizing the energy imparted to the system. This numerical approach circumvents the mathematical challenges due to the poor conditioning that arises from the imposition of boundary conditions on velocity only. We demonstrate that through this technique we are able to reconstruct given flow fields using Dirichlet only conditions. We also perform a sensitivity analysis to investigate the accuracy of this approach for different images with varying spatiotemporal resolution. Finally, we examine the influence of noise on the computed result, showing robustness to unbiased noise with an average error in the simulated velocity approximately 7% for a typical voxel size of 2 mm(3) and temporal resolution of 30 ms. The methodology is eventually applied to a patient case to highlight the potential for a direct clinical translation. (C) 2016 The Authors. Published by Elsevier Ltd.
机译:当前最先进的成像技术可以提供定量信息,以表征在现实的采集时间内可达到的时空分辨率范围内的心室功能。这些成像数据可用于个性化计算机模型,从而通过量化无法直接成像的生物标记物(例如流能,剪切应力和压力梯度)来帮助进行治疗计划。迄今为止,计算机模型通常依赖于侵入性压力测量来针对患者而定。当这些数据不可用时,模型的范围和有效性将受到限制。为了解决这个问题,我们提出了一种新的方法,专门用于基于3D + t超声心动图或磁共振成像(MRI)的无创速度和解剖学数据对患者特定的血液动力学建模。心律周期的数值模拟是通过使用惩罚方法在模型边界指定的图像导出速度来驱动的,该惩罚方法通过最小化传递给系统的能量来恢复物理解。由于仅将边界条件强加于速度而导致的不良条件,因此这种数值方法可绕开数学难题。我们证明,通过这种技术,我们能够使用仅Dirichlet条件重建给定的流场。我们还进行了敏感性分析,以研究这种方法对于具有不同时空分辨率的不同图像的准确性。最后,我们检查了噪声对计算结果的影响,显示了对无偏噪声的鲁棒性,对于2 mm(3)的典型体素大小和30 ms的时间分辨率,模拟速度的平均误差约为7%。该方法最终应用于患者病例,以突出直接临床翻译的潜力。 (C)2016作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号