首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Metabolic Adaptation Establishes Disease Tolerance to Sepsis
【2h】

Metabolic Adaptation Establishes Disease Tolerance to Sepsis

机译:代谢适应建立对败血症的耐受性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe pathologic outcome of infections is a direct consequence of the extent of metabolic dysfunction and damage imposed to tissues that sustain host homeostasis (, , ). Disease tolerance is a defense strategy that limits the pathologic outcome of infections without interfering directly with the host's pathogen load (). This defense strategy relies on tissue damage control mechanisms that preserve the functional output of parenchymal tissues, maintaining homeostatic parameters within a dynamic range compatible with host survival (, , ).Sepsis is a clinical syndrome, affecting ∼19 million individuals per year worldwide, characterized by a maladaptive host response with ensuing organ dysfunction. Despite tremendous efforts during the last decades, no specific therapy for sepsis exists. Increasing rates of antimicrobial resistance and lack of novel antimicrobials adds to the problem and substantiates the urgent need of innovative therapeutic options ().The pathogenesis of sepsis is only partially explained by unfettered inflammation while metabolic deregulation, leading to organ dysfunction and eventually to organ failure, is increasingly recognized as an important component of this process (). While the mechanisms underlying the inflammatory response that characterizes the pathogenesis of sepsis are fairly well understood, those driving metabolic deregulation and multi-organ dysfunction or failure remain elusive (, ).Systemic infections, including those leading to sepsis, are coupled to a host metabolic response restraining invading pathogens from accessing iron (). The large majority of iron available to pathogens is contained within the prosthetic heme groups of hemoproteins, among which hemoglobin holds the largest reservoir (). Upon hemolysis, extracellular hemoglobin is oxidized and releases heme (, ), eventually leading to the accumulation of labile heme in plasma (i.e., metabolic active heme that is loosely bound to a variety of plasma molecules). Accumulation of labile heme in plasma plays a central role in the pathogenesis of sepsis (href="#bib25" rid="bib25" class=" bibr popnode">Larsen et al., 2010). This is countered by the induction heme-catabolism by heme oxygenase-1 (HO-1), which contributes critically to the establishment of disease tolerance to sepsis (href="#bib25" rid="bib25" class=" bibr popnode">Larsen et al., 2010). As a trade-off, however, heme catabolism by HO-1 generates labile iron that can catalyze the production of reactive oxygen species via Fenton chemistry, eventually leading to oxidative stress. This is counteracted by ferritin, a heteropolymeric protein complex encoded by the ferritin heavy/heart chain (FTH) and light/liver (FTL) genes (href="#bib18" rid="bib18" class=" bibr popnode">Harrison and Arosio, 1996). Ferritin is composed of 24 FTH/FTL subunits, which can store and convert ∼4,500 atoms of Fe2+ into inert Fe3+ through the ferroxidase activity of FTH (href="#bib18" rid="bib18" class=" bibr popnode">Harrison and Arosio, 1996). The ferroxidase activity of ferritin is critical to the establishment of disease tolerance to infection in animals (href="#bib15" rid="bib15" class=" bibr popnode">Gozzelino and Soares, 2014) and plants (href="#bib7" rid="bib7" class=" bibr popnode">Deák et al., 1999). Here, we demonstrate that FTH establishes disease tolerance to sepsis via a mechanism that sustains the expression/activity of the liver G6Pase, a rate-limiting enzyme in the gluconeogenesis and glycogenolysis pathways (href="#bib31" rid="bib31" class=" bibr popnode">Mithieux, 1997, href="#bib49" rid="bib49" class=" bibr popnode">van Schaftingen and Gerin, 2002). This is required to support liver glucose production in response to systemic infections so that blood glucose levels are maintained within a dynamic physiologic range compatible with host survival, hence conferring disease tolerance to sepsis.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介感染的病理结果是代谢功能障碍和损害程度的直接结果维持宿主体内稳态的组织(,)。疾病耐受性是一种防御策略,可在不直接干扰宿主病原体负荷的情况下限制感染的病理结果。这种防御策略依靠组织损伤控制机制来保持实质组织的功能输出,将稳态参数维持在与宿主存活相适应的动态范围内。脓毒症是一种临床综合征,每年影响全世界约1900万个人,其特征是由适应不良的宿主反应引起的器官功能障碍。尽管在过去的几十年中付出了巨大的努力,但尚无针对脓毒症的特异性疗法。抗菌药物耐药率的上升和缺乏新型抗菌药物增加了问题并证实了对创新治疗方法的迫切需求()败血症的发病机理仅部分由无节制的炎症解释,同时代谢失调,导致器官功能障碍,最终导致器官衰竭越来越多地被视为此过程的重要组成部分()。虽然表征脓毒症发病机制的炎症反应的潜在机制已广为人知,但驱动代谢失调和多器官功能障碍或衰竭的那些机制仍然难以捉摸(,)。全身性感染(包括导致败血症的感染)与宿主代谢相关抑制入侵病原体接触铁的反应()。病原体可利用的大部分铁都包含在血红蛋白的人造血红素组中,其中血红蛋白拥有最大的储量()。溶血后,细胞外血红蛋白被氧化并释放血红素(),最终导致血浆中不稳定血红素的积累(即与各种血浆分子松散结合的代谢活性血红素)。血浆中不稳定血红素的积累在败血症的发病机理中起着核心作用(href="#bib25" rid="bib25" class=" bibr popnode"> Larsen等,2010 )。这被血红素加氧酶-1(HO-1)引起的血红素分解代谢所抵消,这对建立对败血症的疾病耐受性至关重要(href =“#bib25” rid =“ bib25” class =“ bibr popnode “> Larsen等,2010 )。然而,作为一种折衷,HO-1的血红素分解代谢会产生不稳定的铁,该铁可通过Fenton化学方法催化生成活性氧,最终导致氧化应激。铁蛋白是一种由铁蛋白重/心链(FTH)和轻/肝(FTL)基因编码的杂聚合蛋白复合物(href="#bib18" rid="bib18" class=" bibr popnode">哈里森和阿罗西奥,1996年)。铁蛋白由24个FTH / FTL亚基组成,可通过FTH的铁氧化酶活性将<4,500个Fe 2 + 原子存储并转化为惰性Fe 3 + (href =“#bib18” rid =“ bib18” class =“ bibr popnode”>哈里森和阿罗西奥,1996年)。铁蛋白的铁氧化酶活性对于建立动物对疾病的抗病性至关重要(href="#bib15" rid="bib15" class=" bibr popnode"> Gozzelino and Soares,2014 ) (href="#bib7" rid="bib7" class=" bibr popnode"> Deak等,1999 )。在这里,我们证明FTH通过维持肝脏G6Pase的表达/活性的机制建立了对败血症的耐受性,G6Pase是糖异生和糖原分解途径中的限速酶(href =“#bib31” rid =“ bib31” class =“ bibr popnode”> Mithieux,1997 ,href="#bib49" rid="bib49" class=" bibr popnode"> van Schaftingen and Gerin,2002 。这是支持全身性感染引起的肝葡萄糖生成所必需的,以便血糖水平维持在与宿主存活相适应的动态生理范围内,从而赋予疾病对败血症的耐受性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号