首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain
【2h】

Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain

机译:维甲酸信号调节的细胞身份转换在后脑中维持均质段

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe complex organization of the adult body arises during development by formation of distinct tissues at different locations, many of which are then further subdivided into domains with a specific regional identity. Such regionalization occurs along the anterior-posterior (A-P) axis of the vertebrate central nervous system to form subdivisions that are demarcated by sharp borders. A-P patterning of the neural epithelium is achieved through graded cell signaling, mediated by retinoic acid (RA) and members of the Fgf and Wnt families (), which regulates the spatial expression of transcription factors that specify regional identity (, ). However, at early stages the borders between different subdivisions are ragged and there can be overlapping expression of transcription factors that confer different identities. This imprecision is likely due in part to variability in the formation and interpretation of gradients of signals. In addition, the proliferation and intercalation of cells during tissue growth and morphogenesis can potentially scramble the pattern by causing intermingling of cells between adjacent regions. This raises the questions of how, despite these challenges, a sharp border forms at the interface of subdivisions, and each subdivision acquires a homogeneous regional identity. Insights into underlying mechanisms have come from studies of the vertebrate hindbrain.The hindbrain is subdivided into seven segments, termed rhombomeres (r1–r7), which underlie the organization and A-P specification of neurons and branchial neural crest cells (). Regionalization of the hindbrain is established by graded Fgf and RA signaling, which regulates the spatial expression of a network of transcription factors that underlie the formation and A-P identity of hindbrain segments, including Egr2 (Krox20), MafB, and Hox family members (). Initially, there is some overlap at borders between hoxb1 expression in r4, and egr2 expression in r3 and r5, which is resolved bdevcel_4183_gr4_4c.eps - y mutual repression such that cells express one or the other transcription factor (, , ). The borders of egr2 expression in r3 and r5 are ragged when first detected, and then progressively become sharp and straight (, , ). This sharpening is driven by signaling between segmentally expressed Eph receptors and ephrins that segregates cells and prevents intermingling across borders (, , , , href="#bib77" rid="bib77" class=" bibr popnode">Xu et al., 1999), potentially through regulation of cell adhesion, tension, and/or repulsion (href="#bib7" rid="bib7" class=" bibr popnode">Calzolari et al., 2014, href="#bib8" rid="bib8" class=" bibr popnode">Cayuso et al., 2015, href="#bib16" rid="bib16" class=" bibr popnode">Fagotto et al., 2014, href="#bib63" rid="bib63" class=" bibr popnode">Taylor et al., 2017). Computer simulations suggest that cell segregation and the resolution of cell identity have synergistic roles in border sharpening (href="#bib70" rid="bib70" class=" bibr popnode">Wang et al., 2017).A further mechanism required to establish segments with homogeneous identity was suggested by the results of clonal analyses in the chick hindbrain. Once rhombomeres are seen at the morphological level, intermingling of cells is restricted across segment borders, but the progeny of individual cells labeled at earlier stages can contribute to adjacent segments (href="#bib17" rid="bib17" class=" bibr popnode">Fraser et al., 1990). The finding that some intermingling occurs between hindbrain segments implies that cells that move into another segment acquire an identity in accordance with their new A-P location. Direct evidence for an ability of hindbrain cells to switch A-P identity has come from transplantation experiments in mouse and zebrafish embryos. It was found that when single cells are transplanted between hindbrain segments, they downregulate markers of their site of origin and switch to the identity of their new location (href="#bib25" rid="bib25" class=" bibr popnode">Kemp et al., 2009, href="#bib51" rid="bib51" class=" bibr popnode">Schilling et al., 2001, href="#bib66" rid="bib66" class=" bibr popnode">Trainor and Krumlauf, 2000). In zebrafish, cells can switch identity at early stages of segmentation (11.5 hr post fertilization [hpf]), but this plasticity progressively decreases at later stages (14–16.5 hpf) (href="#bib51" rid="bib51" class=" bibr popnode">Schilling et al., 2001). In contrast to single cells, groups of cells transplanted between segments maintain their original identity, suggestive of a community regulation of cell identity (href="#bib51" rid="bib51" class=" bibr popnode">Schilling et al., 2001, href="#bib66" rid="bib66" class=" bibr popnode">Trainor and Krumlauf, 2000). Such community effects have been found in other contexts to be mediated by positive feedback between transcription factors and intercellular signals that regulate cell identity (href="#bib3" rid="bib3" class=" bibr popnode">Bolouri and Davidson, 2010, href="#bib6" rid="bib6" class=" bibr popnode">Buckingham, 2003, href="#bib14" rid="bib14" class=" bibr popnode">Cossu et al., 1995, href="#bib21" rid="bib21" class=" bibr popnode">Gurdon, 1988, href="#bib61" rid="bib61" class=" bibr popnode">Standley et al., 2001). Through non-autonomous induction of transcription factor expression, this feedback promotes a homogeneous identity within a field of cells (href="#bib3" rid="bib3" class=" bibr popnode">Bolouri and Davidson, 2010). Interestingly, mosaic overexpression of egr2 in the chick hindbrain induces egr2 expression in neighboring cells (href="#bib19" rid="bib19" class=" bibr popnode">Giudicelli et al., 2001), but the molecular basis of this non-autonomous induction is not known.The findings from transplantation experiments have led to the idea that cell identity switching could act in parallel with cell segregation to establish sharp and homogeneous segments (href="#bib13" rid="bib13" class=" bibr popnode">Cooke and Moens, 2002, href="#bib46" rid="bib46" class=" bibr popnode">Pasini and Wilkinson, 2002). However, it is unclear to what extent intermingling of cells between segments occurs during normal development. egr2 has a key role in hindbrain segmentation through specification of r3 and r5 identity (href="#bib54" rid="bib54" class=" bibr popnode">Schneider-Maunoury et al., 1993, href="#bib69" rid="bib69" class=" bibr popnode">Voiculescu et al., 2001) and is a direct transcriptional regulator of ephA4 (href="#bib65" rid="bib65" class=" bibr popnode">Theil et al., 1998), which underlies cell segregation (href="#bib12" rid="bib12" class=" bibr popnode">Cooke et al., 2005, href="#bib75" rid="bib75" class=" bibr popnode">Xu et al., 1995, href="#bib77" rid="bib77" class=" bibr popnode">Xu et al., 1999). It is therefore likely that intermingling between segments is confined to the time period before there has been sufficient upregulation of EphA4 to drive cell segregation. Consistent with findings in chick (href="#bib17" rid="bib17" class=" bibr popnode">Fraser et al., 1990), some isolated cells expressing egr2 or egr2-cre reporter are detected in even-numbered segments in the mouse hindbrain (href="#bib24" rid="bib24" class=" bibr popnode">Irving et al., 1996, href="#bib69" rid="bib69" class=" bibr popnode">Voiculescu et al., 2001). However, recent work has suggested that there is no intermingling between hindbrain segments in zebrafish, and therefore cell identity switching does not occur (href="#bib7" rid="bib7" class=" bibr popnode">Calzolari et al., 2014). In this study, tracking of cells in time-lapse movies from 11 hpf did not detect intermingling between segments, and fluorescent reporter expression driven downstream of egr2 was not detected in any cells in adjacent segments (href="#bib7" rid="bib7" class=" bibr popnode">Calzolari et al., 2014). However, interpretation of these findings may be limited by timing of the analyses, as mechanisms that restrict cell intermingling may already be in place by 11 hpf and prior to detectable expression of the transgenic reporters.We set out to analyze the role and mechanisms of cell identity switching in establishment of homogeneous segmental identity. By using genome modification to create an early reporter of egr2 expression, we show that cell intermingling and identity switching occurs during hindbrain segmentation in zebrafish. egr2 expression is regulated by a combination of A-P location and non-autonomous mechanisms that depend upon the number of neighbors that express egr2. We uncover a crucial role of RA-degrading enzymes, cyp26b1 and cyp26c1, which we show are regulated by egr2 and are required for identity switching of r3 and r5 cells that intermingle into adjacent segments. These findings reveal that coupling between segment identity and retinoid signaling enables homogeneous segmental identity to be maintained despite intermingling of cells.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介成体的复杂组织在发育过程中通过在不同位置形成不同的组织而产生,然后将其中的许多内容进一步细分为具有特定区域标识的领域。这种区域性分布沿着脊椎动物中枢神经系统的前后轴(A-P)形成细分区域,这些细分区域由清晰的边界划定。神经上皮的A-P模式是通过视黄酸(RA)以及Fgf和Wnt家族成员()介导的分级细胞信号传导来实现的,该信号调节指定区域同一性的转录因子的空间表达(,)。但是,在早期阶段,不同细分之间的边界参差不齐,并且可能存在赋予不同身份的转录因子重叠表达。这种不精确性可能部分归因于信号梯度的形成和解释中的可变性。另外,在组织生长和形态发生期间细胞的增殖和嵌入可通过引起相邻区域之间的细胞混合而潜在地扰乱图案。这就提出了一个问题,即尽管面临这些挑战,如何在细分的交界处形成鲜明的边界,并且每个细分都获得同质的区域标识。对脊椎动物后脑的研究揭示了其潜在机制。后脑分为七个部分,称为菱形(r1-r7),是神经元和分支神经c细胞的组织和A-P规范的基础。后脑的区域化是通过分级的Fgf和RA信号传导建立的,该信号调节了转录因子网络的空间表达,这些网络是后脑区段(包括Egr2(Krox20),MafB和Hox家族成员)的形成和A-P身份的基础。最初,r4中的hoxb1表达与r3和r5中的egr2表达之间的边界存在一些重叠,这是通过bdevcel_4183_gr4_4c.eps-y相互抑制解决的,从而使细胞表达一个或另一个转录因子(,,)。首次检测到r3和r5中egr2表达的边界时,其参差不齐,然后逐渐变得清晰而笔直(,,)。这种锐化是由分段表达的Eph受体和ephrins之间的信号传递所驱动的,ephrins分离细胞并防止跨界混杂(,,,,,href="#bib77" rid="bib77" class=" bibr popnode"> Xu等。 ,1999 ),可能是通过调节细胞粘附,张力和/或排斥力来实现的(href="#bib7" rid="bib7" class=" bibr popnode"> Calzolari等,2014 ,href="#bib8" rid="bib8" class=" bibr popnode"> Cayuso等人,2015 ,href =“#bib16” rid =“ bib16” class =“ bibr popnode“> Fagotto等人,2014 ,href="#bib63" rid="bib63" class=" bibr popnode"> Taylor等人,2017 )。计算机模拟表明,细胞分离和细胞身份解析在边界锐化中具有协同作用(href="#bib70" rid="bib70" class=" bibr popnode"> Wang等人,2017 )雏鸡后脑的克隆分析结果提示了建立具有同质同一性的区段所需的另一种机制。一旦在形态学水平上观察到了菱形小节,细胞的混合就被限制在片段边界上,但是在早期阶段标记的单个细胞的后代可以促进相邻的片段(href =“#bib17” rid =“ bib17” class =“ bibr popnode“> Fraser等人,1990 )。在后脑节段之间发生某种混合的发现暗示着,进入另一个节段的细胞将根据其新的A-P位置获得同一性。后脑细胞改变A-P身份的能力的直接证据来自小鼠和斑马鱼胚胎的移植实验。发现将单细胞移植到后脑段之间时,它们会下调其起源部位的标记,并切换到其新位置的身份(href =“#bib25” rid =“ bib25” class =“ bibr popnode” > Kemp等,2009 ,href="#bib51" rid="bib51" class=" bibr popnode">席林等,2001 ,href =“#bib66 “ rid =” bib66“ class =” bibr popnode“> Trainor and Krumlauf,2000 )。在斑马鱼中,细胞可以在分割的早期阶段(受精[hpf]后11.5小时)切换身份,但这种可塑性在后期阶段(14–16.5 hpf)逐渐降低(href =“#bib51” rid =“ bib51” class =“ bibr popnode”> Schilling等人,2001 )。与单细胞相比,在片段之间移植的细胞组保持其原始身份,提示对小区标识进行社区管理(href="#bib51" rid="bib51" class=" bibr popnode"> Schilling等人,2001 ,href =“#bib66” rid =“ bib66” class =“ bibr popnode”> Trainor and Krumlauf,2000 )。在其他情况下,发现这种社区效应是由转录因子与调节细胞身份的细胞间信号之间的正反馈介导的(href="#bib3" rid="bib3" class=" bibr popnode"> Bolouri和Davidson, 2010 ,href="#bib6" rid="bib6" class=" bibr popnode">白金汉,2003年,href =“#bib14” rid =“ bib14” class =“ bibr popnode“> Cossu等人,1995 ,href="#bib21" rid="bib21" class=" bibr popnode">古登,1988 ,href =”#bib61 “ rid =” bib61“ class =” bibr popnode“> Standley等,2001 )。通过非自主诱导转录因子表达,这种反馈促进了细胞区域内的同质性(href="#bib3" rid="bib3" class=" bibr popnode"> Bolouri and Davidson,2010 )。有趣的是,雏鸡后脑中egr2的镶嵌过度表达会在邻近细胞中诱导egr2表达(href="#bib19" rid="bib19" class=" bibr popnode"> Giudicelli et al。,2001 ),但是这种非自主诱导的分子基础是未知的。移植实验的发现导致了这样的想法,即细胞身份转换可以与细胞分离并行进行,以建立尖锐和均质的片段(href =“#bib13” rid =“ bib13” class =“ bibr popnode”>库克和摩恩斯,2002 ,href="#bib46" rid="bib46" class=" bibr popnode">帕西尼和威尔金森,2002 )。然而,尚不清楚在正常发育过程中节段之间的细胞混合发生到什么程度。 egr2通过指定r3和r5身份在后脑分割中起关键作用(href="#bib54" rid="bib54" class=" bibr popnode"> Schneider-Maunoury et al。,1993 ,< a href =“#bib69” rid =“ bib69” class =“ bibr popnode”> Voiculescu等,2001 ),并且是ephA4的直接转录调节子(href =“#bib65” rid =“ bib65“ class =” bibr popnode“> Theil等人,1998 ),它是细胞分离的基础(href="#bib12" rid="bib12" class=" bibr popnode"> Cooke等人。 ,2005 ,href="#bib75" rid="bib75" class=" bibr popnode">徐等人,1995 ,href =“#bib77” rid =“ bib77 “ class =” bibr popnode“> Xu等,1999 )。因此,可能段之间的混合被限制在EphA4有足够的上调以驱动细胞分离之前的时间段。与小鸡的发现一致(href="#bib17" rid="bib17" class=" bibr popnode"> Fraser et al。,1990 ),检测到一些表达egr2或egr2-cre报告基因的分离细胞在鼠标后脑的偶数段中(href="#bib24" rid="bib24" class=" bibr popnode"> Irving等人,1996 ,href =“#bib69” rid =“ bib69” class =“ bibr popnode”> Voiculescu等,2001 )。但是,最近的工作表明,斑马鱼的后脑段之间没有任何混杂,因此不会发生细胞身份切换(href="#bib7" rid="bib7" class=" bibr popnode"> Calzolari等人。 ,2014 )。在这项研究中,跟踪11 hpf的延时电影中的细胞未检测到片段之间的混合,并且在相邻片段的任何细胞中均未检测到egr2下游驱动的荧光报告基因表达(href =“#bib7” rid = “ bib7” class =“ bibr popnode”> Calzolari等人,2014 )。但是,这些发现的解释可能会受到分析时间的限制,因为限制细胞混合的机制可能已经在11 hpf之前就已经存在,并且在可检测到转基因报道基因的表达之前。我们着手分析细胞的作用和机制建立同质分段身份时的身份切换。通过使用基因组修饰来创建egr2表达的早期报道者,我们显示了在斑马鱼的后脑分割过程中发生细胞混合和身份转换。 egr2的表达受A-P位置和非自主机制的组合调节,该机制取决于表达egr2的邻居的数量。我们发现RA降解酶cyp26b1和cyp26c1的关键作用,我们显示它们受egr2调节,是混合到相邻节段的r3和r5细胞身份转换所必需的。这些发现表明,尽管细胞混合,但在区段同一性和类维生素A信号传导之间的偶联使得能够维持均质的区段同一性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号