首页> 美国卫生研究院文献>iScience >Development and Genome Sequencing of a Laboratory-Inbred Miniature Pig Facilitates Study of Human Diabetic Disease
【2h】

Development and Genome Sequencing of a Laboratory-Inbred Miniature Pig Facilitates Study of Human Diabetic Disease

机译:实验室自交小型猪的开发和基因组测序为人类糖尿病疾病的研究提供了便利

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPig (Sus scrofa) has served not only as one of the most economically important livestock but also as an important model organism used in many areas of medical research, including obesity, cardiovascular disease, endocrinology, diabetes, alcoholism, nephropathy, and organ transplantation, owing to parallels with humans in anatomy and physiology (, , , , ). There are over 730 distinct pig breeds worldwide, whose diverse phenotypes are shaped by the combined effects of local adaptation and artificial selection (). However, the vast majority of pig breeds have been developed with a focus on economic benefits, rather than breeding an ideal laboratory animal, which directly resulted in almost non-existence of excellent inbred pig strains as model organisms used in biomedical research.After several hundred years of intense artificial selection, current commercial pig breeds, represented by Duroc, have undergone drastic phenotypic changes and genetic adaptations that are economically important to the pig industry (e.g., reduction in feeding costs) and the consumer (e.g., higher production of lean meats) (, , ). In this context, a series of absolutely visible traits of current commercial pigs, such as large body size (adult individuals can reach 300–400 kg in weight), long life cycle, and weak inbreeding level (), have become obstacles in using pigs as biomedical animal models, especially in the studies of obesity and diabetes mellitus, because they result in high maintenance costs, specialized facility requirements, long experimental periods, and poor repeatability (). Moreover, the different biomedical responses and performance of commercial pig breeds from those of wild boars, including severe resistance to “diabetogenic” (high-calorie and low-activity) environment (), also go against the construction of some pig models for human diseases. These defects mean the urgent need for a professionally experimental pig strain, which drove us to develop a laboratory Asian miniature pig inbred line— Bama miniature pig (BM) based on Bama xiang pig (BX), a primitive breed without artificial imprinting for commercial characters, whose many characteristics, such as small volume, early maturity, and long-term adaptation to inbreeding, are valuable in the construction of an ideal inbred laboratory pig line (), more than 30 years ago.It is known that reference genome sequence is quite important to biomedical studies using pig model (, ). Although the genomes of some pig breeds had been published (href="#bib24" rid="bib24" class=" bibr popnode">Groenen et al., 2012, href="#bib43" rid="bib43" class=" bibr popnode">Li et al., 2017), the chromosome-level genomes with comprehensive annotation are still scarce resources to date. Moreover, most of the currently reported pig genomes are from commercial pig breeds, except, to our knowledge, only one highly fragmented draft genome sequence from an experimental inbreeding line, Wuzhishan miniature pig (href="#bib18" rid="bib18" class=" bibr popnode">Fang et al., 2012). Therefore, there is an inevitable quandary in most of the health studies involved in pig genome, that the Duroc reference genome (Sscrofa11.1, GenBank assembly accession: GCA_000003025.6) nearly becomes the only choice, no matter which kind of pig breed is selected. The presentation of BM high-quality reference genome can enrich the Sus scrofa genome database to effectively improve this dilemma, and likewise provide essential information needed to shed light on the genetic components of the BM phenotypes advantages to diabetic study, especially the relatively lower resistance to diabetic pressure, by comparative genomic analyses.In this study, we have successfully inbred BMs to generation 19 (inbred line F19), which is, to our knowledge, the pig line with the highest inbreeding coefficient to date. Using combined technologies, we presented a chromosome-level genome sequence and the available annotation of highly inbred BM. Comparative analyses of BM and Duroc genomes revealed substantial genomic differences between them, as well as identified genetic basis underlying the BM's superior traits to study diabetic diseases. Resequencing analyses between BX and BM populations confirmed the leading inbreeding degree of BMs at the genome-wide level. Besides the positively selected genes (PSGs), selective sweep and transcriptome analyses also found some changes of energy metabolism systems, like phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, related to diabetic resistance. This study provided not only an inbred miniature pig line to overcome these preexisting obstacles of using pig in diabetic researches but also a comprehensive molecular basis as reference to further optimize breeding of the experimental animal's phenotypes advantageous to diabetic diseases researches. Meanwhile, it systematically boosted the understanding of the mechanism of resistance to diabetogenic pressure from the genome level to the transcriptome level.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介猪(Sus scrofa)不仅是经济上最重要的牲畜之一,而且由于与人体在解剖学和生理学上的相似性,它也是在许多医学研究领域中使用的重要模型生物,包括肥胖症,心血管疾病,内分泌学,糖尿病,酒精中毒,肾病和器官移植(,,,)。全世界有730多种不同的猪种,其不同的表型受局部适应和人工选择的综合作用影响。但是,绝大多数猪品种的开发都着眼于经济利益,而不是繁殖理想的实验动物,这直接导致几乎没有优秀的近交猪品系作为生物医学研究中使用的模型生物。经过多年的严格人工选择,以杜洛克为代表的当前商业猪品种经历了急剧的表型变化和遗传适应,对养猪业(例如,降低饲喂成本)和消费者(例如,瘦肉产量提高)具有重要的经济意义。 )(,,)。在这种情况下,当前商业猪的一系列绝对可见的特征,例如体型大(成年个体体重可以达到300-400公斤),寿命长,近交水平低(),已成为使用猪的障碍作为生物医学动物模型,尤其是在肥胖症和糖尿病研究中,因为它们导致高昂的维护成本,专门的设施要求,较长的实验时间以及可重复性差()。此外,商业猪品种与野猪的生物医学反应和性能不同,包括对“糖尿病”(高热量和低活性)环境的严重抵抗力(),也不利于某些人类疾病猪模型的构建。 。这些缺陷意味着迫切需要专业的实验猪品系,这驱使我们开发了实验室亚洲微型猪自交系-基于巴马香猪(BX)的巴马微型猪(BM),该原始品种没有针对商业字符的人工烙印它的许多特点,例如体积小,成熟度高和对近交系的长期适应性等,在30年前构建理想的近交实验猪系()时具有重要的价值。对于使用猪模型的生物医学研究而言非常重要(,)。尽管一些猪的基因组已经发表(href="#bib24" rid="bib24" class=" bibr popnode"> Groenen等人,2012 ,href =“#bib43” rid =“ bib43” class =“ bibr popnode”> Li等人,2017 ),迄今为止,具有全面注释的染色体级基因组仍然是稀缺资源。此外,目前所报告的大多数猪基因组均来自商业猪品种,据我们所知,只有来自实验近交系五指山微型猪的一个高度片段化的基因组序列草案(href =“#bib18” rid =“ bib18 “ class =” bibr popnode“> Fang等人,2012 )。因此,在大多数与猪基因组有关的健康研究中都有一个不可避免的难题,那就是,杜洛克参考基因组(Sscrofa11.1,GenBank组装号:GCA_000003025.6)几乎成为唯一的选择,无论哪种猪品种已选择。 BM高质量参考基因组的展示可以丰富Sus scrofa基因组数据库,以有效地改善这一难题,并且同样提供必要的信息,以阐明BM表型的遗传成分对糖尿病研究的优势,尤其是相对较低的耐药性。通过比较基因组分析,确定糖尿病的压力。在这项研究中,我们成功地将BMs自交至第19代(自交系F19),据我们所知,这是迄今为止近交系数最高的猪系。使用组合技术,我们提出了染色体水平的基因组序列和高度近交BM的可用注释。对BM基因组和Duroc基因组的比较分析显示,它们之间存在重大的基因组差异,并确定了BM研究糖尿病疾病的优越性状的潜在遗传基础。 BX和BM种群之间的重新测序分析证实了BM在全基因组水平上的近交率领先。除了阳性选择基因(PSG),选择性扫描和转录组分析还发现了能量代谢系统的某些变化,例如磷脂酰肌醇3-激酶(PI3K)-Akt信号通路,与糖尿病抵抗有关。该研究不仅为克服糖尿病研究中存在的使用猪的现有障碍提供了近交小型猪系,而且为进一步优化有利于糖尿病疾病研究的实验动物表型的选育提供了全面的分子基础。同时,它从基因组水平到转录组水平,系统地促进了对抗糖尿病压力机制的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号