首页> 美国卫生研究院文献>Journal of Bacteriology >Escherichia coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential
【2h】

Escherichia coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential

机译:大肠杆菌的谷氨酸和精氨酸依赖性酸抗性系统可提高内部pH值和跨膜电位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to the acidic nature of the stomach, enteric organisms must withstand extreme acid stress for colonization and pathogenesis. Escherichia coli contains several acid resistance systems that protect cells to pH 2. One acid resistance system, acid resistance system 2 (AR2), requires extracellular glutamate, while another (AR3) requires extracellular arginine. Little is known about how these systems protect cells from acid stress. AR2 and AR3 are thought to consume intracellular protons through amino acid decarboxylation. Antiport mechanisms then exchange decarboxylation products for new amino acid substrates. This form of proton consumption could maintain an internal pH (pHi) conducive to cell survival. The model was tested by estimating the pHi and transmembrane potential (ΔΨ) of cells acid stressed at pH 2.5. During acid challenge, glutamate- and arginine-dependent systems elevated pHi from 3.6 to 4.2 and 4.7, respectively. However, when pHi was manipulated to 4.0 in the presence or absence of glutamate, only cultures challenged in the presence of glutamate survived, indicating that a physiological parameter aside from pHi was also important. Measurements of ΔΨ indicated that amino acid-dependent acid resistance systems help convert membrane potential from an inside negative to inside positive charge, an established acidophile strategy used to survive extreme acidic environments. Thus, reversing ΔΨ may be a more important acid resistance strategy than maintaining a specific pHi value.
机译:由于胃的酸性,肠胃生物必须承受极端的酸胁迫才能定植和致病。大肠埃希氏菌包含几种抗酸性系统,可保护细胞达到pH2。一种抗酸性系统,即抗酸性系统2(AR2),需要细胞外谷氨酸,而另一种(AR3)需要细胞外精氨酸。关于这些系统如何保护细胞免受酸胁迫了解甚少。据认为,AR2和AR3通过氨基酸脱羧消耗细胞内质子。然后,反端口机制将脱羧产物交换为新的氨基酸底物。这种形式的质子消耗可以维持有利于细胞存活的内部pH(pHi)。通过估计在pH 2.5下受酸的细胞的pHi和跨膜电位(ΔΨ)来测试该模型。在酸刺激过程中,谷氨酸和精氨酸依赖性系统分别将pHi从3.6升高到4.2和4.7。但是,当在存在或不存在谷氨酸的情况下将pHi调节至4.0时,只有在存在谷氨酸的情况下受到攻击的培养物才能存活,这表明pHi以外的生理参数也很重要。 ΔΨ的测量表明,氨基酸依赖性酸抗性系统有助于将膜电势从内部负电荷转换为内部正电荷,这是一种用于在极端酸性环境中生存的成熟嗜酸剂策略。因此,逆转ΔΨ可能比保持特定的pHi值更重要的耐酸性策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号