首页> 美国卫生研究院文献>other >Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity
【2h】

Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

机译:大肠杆菌BL21(DE3)中谷氨酸依赖性酸抗性系统的激活导致脂肪酸生物转化活性的增加

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (>1)) into n-heptanoic acid (>5) and 11-hydroxyundec-9-enoic acid (>4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.
机译:在设想的生物精炼概念中,包括生物质中羧酸在内的羧酸的生物合成至关重要。但是,由于产品毒性会阻碍全细胞生物催化剂的性能,因此生产力通常较低。在这里,我们研究了影响大肠杆菌对中链羧酸(即正庚酸)诱导的胁迫的耐受性的因素。在正庚酸存在下生长的大肠杆菌BL21(DE3)和MG1655的代谢和基因组反应表明,基于GadA / B的谷氨酸依赖性酸抗性(GDAR)系统对于细胞耐受性可能至关重要。 GDAR系统通过催化谷氨酸的脱羧作用清除细胞内质子,在大肠杆菌BL21(DE3)中不起作用。通过过度表达rcsB和dsrA基因来激活该菌株中的GDAR系统,其中的基因产物分别参与GadE和RpoS的激活,不仅对HCl具有耐性,而且对正庚酸具有耐性。此外,GDAR系统的激活使表达黄曲霉微球菌醇脱氢酶和恶臭假单胞菌的Baeyer-Villiger单加氧酶的重组大肠杆菌BL21(DE3)在蓖麻油酸的生物转化中达到了60%的更高产品浓度(即12 -hydroxyoctadec-9-enoic acid(> 1 ))变成正庚酸(> 5 )和11-hydroxyundec-9-enoic acid(> 4 ) >)。这项研究可能有助于工程化基于大肠杆菌的生物催化剂,以从可再生生物质生产羧酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号