首页> 美国卫生研究院文献>International Journal of Environmental Research and Public Health >Correlation in Causality: A Progressive Study of Hierarchical Relations within Human and Organizational Factors in Coal Mine Accidents
【2h】

Correlation in Causality: A Progressive Study of Hierarchical Relations within Human and Organizational Factors in Coal Mine Accidents

机译:因果关系中的相关性:煤矿事故人类和组织因素中的等级关系逐步研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It has been revealed in numerous investigation reports that human and organizational factors (HOFs) are the fundamental causes of coal mine accidents. However, with various kinds of accident-causing factors in coal mines, the lack of systematic analysis of causality within specific HOFs could lead to defective accident precautions. Therefore, this study centered on the data-driven concept and selected 883 coal mine accident reports from 2011 to 2020 as the original data to discover the influencing paths of specific HOFs. First, 55 manifestations with the characteristics of the coal mine accidents were extracted by text segmentation. Second, according to their own attributes, all manifestations were mapped into the Human Factors Analysis and Classification System (HFACS), forming a modified HFACS-CM framework in China’s coal-mining industry with 5 categories, 19 subcategories and 42 unsafe factors. Finally, the Apriori association algorithm was applied to discover the causal association rules among external influences, organizational influences, unsafe supervision, preconditions for unsafe acts and direct unsafe acts layer by layer, exposing four clear accident-causing “trajectories” in HAFCS-CM. This study contributes to the establishment of a systematic causation model for analyzing the causes of coal mine accidents and helps form corresponding risk prevention measures directly and objectively.
机译:在众多调查报告中揭示了人类和组织因素(HOFS)是煤矿事故的根本原因。然而,随着煤矿中的各种事故导致因素,特定HOF在特定HOF中的因果关系缺乏系统分析可能导致事故预防措施有缺陷。因此,本研究以数据驱动的概念为中心,并选择了从2011年到2020年的883煤矿事故报告作为原始数据,以发现特定HOF的影响路径。首先,通过案文分割提取55项具有煤矿事故特征的表现。其次,根据自己的属性,将所有表现形式均被映射到人类因素分析和分类系统(HFAC),在中国的煤矿工业中形成改进的HFACS-CM框架,其中5个类别,19个子类别和42个不安全因素。最后,应用了APRiori协会算法,以发现外部影响,组织影响,不安全监督,不安全行为的前提条件和直接不安全行为层的因果关系规则,在HAFCS-CM中暴露四个明确的事故“轨迹”。本研究有助于建立一个系统的因果关系,用于分析煤矿事故的原因,并有助于直接和客观地形成相应的风险预防措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号