首页> 美国卫生研究院文献>Biophysical Journal >Machine Learning for Prioritization of Thermostabilizing Mutations for G-Protein Coupled Receptors
【2h】

Machine Learning for Prioritization of Thermostabilizing Mutations for G-Protein Coupled Receptors

机译:用于优先考虑G蛋白偶联受体的热稳定突变的机器学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although the three-dimensional structures of G-protein coupled receptors (GPCRs), the largest superfamily of drug targets, have enabled structure-based drug design, there are no structures available for 87% of GPCRs. This is due to the stiff challenge in purifying the inherently flexible GPCRs. Identifying thermostabilized mutant GPCRs via systematic alanine scanning mutations has been a successful strategy in stabilizing GPCRs, but it remains a daunting task for each GPCR. We developed a computational method that combines sequence-, structure-, and dynamics-based molecular properties of GPCRs that recapitulate GPCR stability, with four different machine learning methods to predict thermostable mutations ahead of experiments. This method has been trained on thermostability data for 1231 mutants, the largest publicly available data set. A blind prediction for thermostable mutations of the complement factor C5a receptor 1 retrieved 36% of the thermostable mutants in the top 50 prioritized mutants compared to 3% in the first 50 attempts using systematic alanine scanning.
机译:虽然G蛋白偶联受体(GPCR)的三维结构,最大的药物靶标,具有基于结构的药物设计,但没有可用于87%的GPCR的结构。这是由于纯化固有柔性GPCR的挑战困难。通过系统丙氨酸扫描突变鉴定热偶然毒性突变GPCR是稳定GPCR的成功策略,但对每个GPCR来说仍然是令人生畏的任务。我们开发了一种计算方法,该计算方法将GPCR的序列,结构和动力学的分子特性结合在一起,具有四种不同的机器学习方法,以预测实验前的热稳定突变。该方法已经训练了1231个突变体的热稳定性数据,这是最大的公共可用数据集。与使用系统丙氨酸扫描的前50次尝试中,互补因子C5a受体1的热稳定突变的盲预测在前50个优先突变体中检索了36%的热稳定突变体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号