首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control
【2h】

A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control

机译:基于深度强化学习和双同步控制的面向多任务的机器人手臂运动计划方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Humanoid robots are equipped with humanoid arms to make them more acceptable to the general public. Humanoid robots are a great challenge in robotics. The concept of digital twin technology complies with the guiding ideology of not only Industry 4.0, but also Made in China 2025. This paper proposes a scheme that combines deep reinforcement learning (DRL) with digital twin technology for controlling humanoid robot arms. For rapid and stable motion planning for humanoid robots, multitasking-oriented training using the twin synchro-control (TSC) scheme with DRL is proposed. For switching between tasks, the robot arm training must be quick and diverse. In this work, an approach for obtaining a priori knowledge as input to DRL is developed and verified using simulations. Two simple examples are developed in a simulation environment. We developed a data acquisition system to generate angle data efficiently and automatically. These data are used to improve the reward function of the deep deterministic policy gradient (DDPG) and quickly train the robot for a task. The approach is applied to a model of the humanoid robot BHR-6, a humanoid robot with multiple-motion mode and a sophisticated mechanical structure. Using the policies trained in the simulations, the humanoid robot can perform tasks that are not possible to train with existing methods. The training is fast and allows the robot to perform multiple tasks. Our approach utilizes human joint angle data collected by the data acquisition system to solve the problem of a sparse reward in DRL for two simple tasks. A comparison with simulation results for controllers trained using the vanilla DDPG show that the designed controller developed using the DDPG with the TSC scheme have great advantages in terms of learning stability and convergence speed.
机译:类人机器人配备了类人手臂,使它们更易于为大众所接受。人形机器人是机器人技术中的巨大挑战。数字孪生技术的概念不仅符合工业4.0的指导思想,还符合《中国制造2025》的指导思想。本文提出了一种将深度强化学习(DRL)与数字孪生技术相结合的方案来控制人形机器人手臂。为了对类人机器人进行快速稳定的运动规划,提出了使用带有DRL的双同步控制(TSC)方案的面向多任务的训练。为了在任务之间进行切换,机器人手臂训练必须快速且多样化。在这项工作中,使用模拟方法开发并验证了一种获取先验知识作为DRL输入的方法。在模拟环境中开发了两个简单的示例。我们开发了一种数据采集系统,可以高效,自动地生成角度数据。这些数据用于改善深度确定性策略梯度(DDPG)的奖励功能,并快速训练机器人执行任务。该方法应用于类人机器人BHR-6的模型,该模型具有多动作模式和复杂的机械结构。使用模拟中训练的策略,人形机器人可以执行用现有方法无法训练的任务。培训速度很快,可以使机器人执行多项任务。我们的方法利用数据采集系统收集的人体关节角度数据来解决DRL中针对两个简单任务的稀疏奖励问题。与使用香草DDPG训练的控制器的仿真结果进行比较,结果表明,使用DDPG和TSC方案开发的设计控制器在学习稳定性和收敛速度方面具有很大优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号