首页> 美国卫生研究院文献>Bioinformatics >Towards reliable named entity recognition in the biomedical domain
【2h】

Towards reliable named entity recognition in the biomedical domain

机译:在生物医学领域实现可靠的命名实体识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic biomedical named entity recognition (BioNER) is a key task in biomedical information extraction. For some time, state-of-the-art BioNER has been dominated by machine learning methods, particularly conditional random fields (CRFs), with a recent focus on deep learning. However, recent work has suggested that the high performance of CRFs for BioNER may not generalize to corpora other than the one it was trained on. In our analysis, we find that a popular deep learning-based approach to BioNER, known as bidirectional long short-term memory network-conditional random field (BiLSTM-CRF), is correspondingly poor at generalizing. To address this, we evaluate three modifications of BiLSTM-CRF for BioNER to improve generalization: improved regularization via variational dropout, transfer learning and multi-task learning.
机译:自动生物医学命名实体识别(BioNER)是生物医学信息提取中的关键任务。一段时间以来,最先进的BioNER一直被机器学习方法(尤其是条件随机字段(CRF))所控制,而最近的重点是深度学习。但是,最近的工作表明,针对BioNER的CRF的高性能可能无法推广到除受过训练的CRF之外的其他语料库。在我们的分析中,我们发现一种流行的基于深度学习的BioNER方法,即双向长短期记忆网络条件随机场(BiLSTM-CRF),在推广上相对较差。为了解决这个问题,我们评估了BiLSTM-CRF对BioNER的三种改进,以提高泛化能力:通过变异辍学,转移学习和多任务学习改善正则化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号