首页> 美国卫生研究院文献>Computational and Structural Biotechnology Journal >Current computational methods for predicting protein interactions of natural products
【2h】

Current computational methods for predicting protein interactions of natural products

机译:当前预测天然产物蛋白质相互作用的计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural products (NPs) are an indispensable source of drugs and they have a better coverage of the pharmacological space than synthetic compounds, owing to their high structural diversity. The prediction of their interaction profiles with druggable protein targets remains a major challenge in modern drug discovery. Experimental (off-)target predictions of NPs are cost- and time-consuming, whereas computational methods, on the other hand, are much faster and cheaper. As a result, computational predictions are preferentially used in the first instance for NP profiling, prior to experimental validations. This review covers recent advances in computational approaches which have been developed to aid the annotation of unknown drug-target interactions (DTIs), by focusing on three broad classes, namely: ligand-based, target-based, and target—ligand-based (hybrid) approaches. Computational DTI prediction methods have the potential to significantly advance the discovery and development of novel selective drugs exhibiting minimal side effects. We highlight some inherent caveats of these methods which must be overcome to enable them to realize their full potential, and a future outlook is given.
机译:天然产物(NPs)是必不可少的药物来源,由于其高度的结构多样性,它们比合成化合物具有更好的药理空间覆盖范围。预测它们与可药物化蛋白质靶标的相互作用谱仍然是现代药物发现中的主要挑战。 NPs的实验性(非目标)预测既费钱又费时,而另一方面,计算方法则更快,更便宜。结果,在进行实验验证之前,首先将计算预测优先用于NP分析。这篇综述涵盖了计算方法的最新进展,该方法通过重点研究三大类,即基于配体的,基于靶的和基于靶-配体的(混合)方法。计算性DTI预测方法具有显着促进显示出最小副作用的新型选择性药物的发现和开发的潜力。我们重点介绍了这些方法的一些固有的警告,必须克服这些警告,以使它们能够充分发挥其潜力,并给出未来的展望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号