首页> 美国卫生研究院文献>other >NON-LEXICAL APPROACHES TO IDENTIFYING ASSOCIATIVE RELATIONS IN THE GENE ONTOLOGY
【2h】

NON-LEXICAL APPROACHES TO IDENTIFYING ASSOCIATIVE RELATIONS IN THE GENE ONTOLOGY

机译:识别基因本体论中关联关系的非严格方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Gene Ontology (GO) is a controlled vocabulary widely used for the annotation of gene products. GO is organized in three hierarchies for molecular functions, cellular components, and biological processes but no relations are provided among terms across hierarchies. The objective of this study is to investigate three non-lexical approaches to identifying such associative relations in GO and compare them among themselves and to lexical approaches. The three approaches are: computing similarity in a vector space model, statistical analysis of co-occurrence of GO terms in annotation databases, and association rule mining. Five annotation databases (FlyBase, the Human subset of GOA, MGI, SGD, and WormBase) are used in this study. A total of 7,665 associations were identified by at least one of the three non-lexical approaches. Of these, 12% were identified by more than one approach. While there are almost 6,000 lexical relations among GO terms, only 203 associations were identified by both non-lexical and lexical approaches. The associations identified in this study could serve as the starting point for adding associative relations across hierarchies to GO, but would require manual curation. The application to quality assurance of annotation databases is also discussed.
机译:基因本体论(GO)是一种受控词汇表,广泛用于注释基因产物。 GO按照分子功能,细胞成分和生物过程的三个层次进行组织,但是各个层次之间的术语之间未提供任何关系。这项研究的目的是研究三种非词汇方法来识别GO中的这种关联关系,并将它们之间以及与词汇方法进行比较。这三种方法是:在向量空间模型中计算相似度,对注释数据库中GO项的同时出现进行统计分析以及关联规则挖掘。本研究使用五个注释数据库(FlyBase,GOA的人类子集,MGI,SGD和WormBase)。通过三种非词汇方法中的至少一种,共确定了7,665个关联。其中,有12%是通过一种以上的方法确定的。尽管GO术语之间有近6,000个词法关系,但通过非词法和词法方法只能识别203个关联。在这项研究中确定的关联可以作为在GO中添加跨层次结构的关联关系的起点,但是需要手动管理。还讨论了注释数据库在质量保证中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号