首页> 美国卫生研究院文献>other >CMARRT: A Tool for the Analysis of ChIP-chip Data from Tiling Arrays by Incorporating the Correlation Structure
【2h】

CMARRT: A Tool for the Analysis of ChIP-chip Data from Tiling Arrays by Incorporating the Correlation Structure

机译:CMARRT:一种通过整合相关结构来分析切片阵列中的ChIP芯片数据的工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Whole genome tiling arrays at a user specified resolution are becoming a versatile tool in genomics. Chromatin immunoprecipitation on microarrays (ChIP-chip) is a powerful application of these arrays. Although there is an increasing number of methods for analyzing ChIP-chip data, perhaps the most simple and commonly used one, due to its computational efficiency, is testing with a moving average statistic. Current moving average methods assume exchangeability of the measurements within an array. They are not tailored to deal with the issues due to array designs such as overlapping probes that result in correlated measurements. We investigate the correlation structure of data from such arrays and propose an extension of the moving average testing via a robust and rapid method called CMARRT. We illustrate the pitfalls of ignoring the correlation structure in simulations and a case study. Our approach is implemented as an R package called CMARRT and can be used with any tiling array platform.
机译:用户指定分辨率的全基因组平铺阵列正在成为基因组学的通用工具。微阵列(ChIP芯片)上的染色质免疫沉淀是这些阵列的强大应用。尽管分析ChIP芯片数据的方法越来越多,但由于其计算效率高,最简单,最常用的方法可能是使用移动平均值统计进行测试。当前的移动平均法假设阵列内测量值的可交换性。由于阵列设计(例如重叠的探头会导致相关的测量结果),它们不适用于处理这些问题。我们研究了来自此类数组的数据的相关结构,并提出了一种通过称为 CMARRT 的稳健而快速的方法来扩展移动平均测试。我们说明了在仿真和案例研究中忽略相关结构的陷阱。我们的方法以称为 CMARRT 的R包实现,可与任何切片阵列平台一起使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号