首页> 外文期刊>Bioinformatics >A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chIP-chip experiments: systematically incorporating validated biological knowledge
【24h】

A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chIP-chip experiments: systematically incorporating validated biological knowledge

机译:一个有监督的隐马尔可夫模型框架,可有效地分割转录和芯片实验中的切片阵列数据:系统地整合经过验证的生物学知识

获取原文
获取原文并翻译 | 示例
       

摘要

Motivation: Large-scale tiling array experiments are becoming increasingly common in genomics. In particular, the ENCODE project requires the consistent segmentation of many different tiling array datasets into 'active regions' (e.g. finding transfrags from transcriptional data and putative binding sites from ChIP-chip experiments). Previously, such segmentation was done in an unsupervised fashion mainly based on characteristics of the signal distribution in the tiling array data itself. Here we propose a supervised framework for doing this. It has the advantage of explicitly incorporating validated biological knowledge into the model and allowing for formal training and testing. Methodology: In particular, we use a hidden Markov model (HMM) framework, which is capable of explicitly modeling the dependency between neighboring probes and whose extended version (the generalized HMM) also allows explicit description of state duration density. We introduce a formal definition of the tiling-array analysis problem, and explain how we can use this to describe sampling small genomic regions for experimental validation to build up a gold-standard set for training and testing. We then describe various ideal and practical sampling strategies (e.g. maximizing signal entropy within a selected region versus using gene annotation or known promoters as positives for transcription or ChIP-chip data, respectively). Results: For the practical sampling and training strategies, we show how the size and noise in the validated training data affects the performance of an HMM applied to the ENCODE transcriptional and ChIP-chip experiments. In particular, we show that the HMM framework is able to efficiently process tiling array data as well as or better than previous approaches. For the idealized sampling strategies, we show how we can assess their performance in a simulation framework and how a maximum entropy approach, which samples sub-regions with very different signal intensities, gives the maximally performing gold-standard. This latter result has strong implications for the optimum way medium-scale validation experiments should be carried out to verify the results of the genome-scale tiling array experiments.
机译:动机:大规模平铺阵列实验在基因组学中变得越来越普遍。特别是,ENCODE项目要求将许多不同的平铺阵列数据集一致地分割为``活性区域''(例如,从转录数据中找到转化片段,并从芯片实验中找到推定的结合位点)。以前,这种分割主要是基于切片阵列数据本身中信号分布的特性,以无监督的方式进行的。在这里,我们提出了一个监督框架。它具有将经过验证的生物学知识明确纳入模型并允许进行正式培训和测试的优势。方法:特别是,我们使用了隐马尔可夫模型(HMM)框架,该框架能够显式地建模相邻探针之间的依存关系,并且其扩展版本(广义HMM)还允许状态持续时间密度的显式描述。我们介绍了平铺阵列分析问题的正式定义,并解释了如何使用它来描述对小基因组区域进行采样以进行实验验证,从而建立了用于培训和测试的金标准集。然后,我们描述了各种理想和实用的采样策略(例如,使选定区域内的信号熵最大化,而不是分别使用基因注释或已知启动子作为转录或ChIP芯片数据的阳性)。结果:对于实际的采样和训练策略,我们展示了经过验证的训练数据中的大小和噪声如何影响应用于ENCODE转录和ChIP芯片实验的HMM的性能。特别是,我们证明了HMM框架能够有效地处理切片数组数据,甚至比以前的方法更好。对于理想的采样策略,我们展示了如何在仿真框架中评估它们的性能,以及最大熵方法(该方法以不同的信号强度对子区域进行采样)给出了性能最高的金标准。后一个结果对于应该进行中等规模验证实验以验证基因组规模平铺阵列实验结果的最佳方式具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号