首页> 美国卫生研究院文献>Journal of Digital Imaging >Improving Radiology Report Quality by Rapidly Notifying Radiologist of Report Errors
【2h】

Improving Radiology Report Quality by Rapidly Notifying Radiologist of Report Errors

机译:通过迅速通知放射医师报告错误来提高放射学报告质量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Radiology report errors occur for many reasons including the use of pre-filled report templates, wrong-word substitution, nonsensical phrases, and missing words. Reports may also contain clinical errors that are not specific to the speech recognition including wrong laterality and gender-specific discrepancies. Our goal was to create a custom algorithm to detect potential gender and laterality mismatch errors and to notify the interpreting radiologists for rapid correction. A JavaScript algorithm was devised to flag gender and laterality mismatch errors by searching the text of the report for keywords and comparing them to parameters within the study’s HL7 metadata (i.e., procedure type, patient sex). The error detection algorithm was retrospectively applied to 82,353 reports 4 months prior to its development and then prospectively to 309,304 reports 15 months after implementation. Flagged reports were reviewed individually by two radiologists for a true gender or laterality error and to determine if the errors were ultimately corrected. There was significant improvement in the number of flagged reports (pre, 198/82,353 [0.24 %]; post, 628/309,304 [0.20 %]; P = 0.04) and reports containing confirmed gender or laterality errors (pre, 116/82,353 [0.014 %]; post, 285/309,304 [0.09 %]; P < 0.0001) after implementing our error notification system. The number of flagged reports containing an error that were ultimately corrected improved dramatically after implementing the notification system (pre, 17/116 [15 %]; post, 239/285 [84 %]; P < 0.0001). We developed a successful automated tool for detecting and notifying radiologists of potential gender and laterality errors, allowing for rapid report correction and reducing the overall rate of report errors.
机译:发生放射学报告错误的原因很多,包括使用预填报告模板,错误单词替换,无意义的短语和遗漏单词。报告还可能包含并非语音识别所特有的临床错误,包括错误的偏误和性别差异。我们的目标是创建一种自定义算法,以检测潜在的性别和侧向失配错误,并通知放射线放射医师进行快速校正。通过在报告的文本中搜索关键字,并将其与研究的HL7元数据中的参数(即手术类型,患者性别)进行比较,设计了一种JavaScript算法来标记性别和横向偏向错误。错误检测算法在开发前4个月被追溯应用于82,353个报告,然后在实施15个月后被追溯至309,304个报告。两名放射科医生分别对标记过的报告进行了检查,以确定其真实的性别或偏侧性错误,并确定错误是否最终得到纠正。标记报告的数量(前198 / 82,353 [0.24%];发布后,628 / 309,304 [0.20%]; P = 0.04)和包含确认的性别或偏侧性错误的报告(前116 / 82,353 [ 0.014%];发布了我们的错误通知系统后,发布了285 / 309,304 [0.09%]; P <0.0001)。实施通知系统后,包含错误并最终被纠正的带标记报告的数量有了显着提高(pre / 17/116 [15%]; post 239/285 [84%]; P <0.0001)。我们开发了一种成功的自动化工具,用于检测和通知放射科医生潜在的性别和偏侧错误,从而可以快速纠正报告并降低报告错误的总体发生率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号