首页> 美国卫生研究院文献>other >Frequency distribution signatures and classification of within-object pixels
【2h】

Frequency distribution signatures and classification of within-object pixels

机译:对象内像素内频率分布签名和分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The premise of geographic object-based image analysis (GEOBIA) is that image objects are composed of aggregates of pixels that correspond to earth surface features of interest. Most commonly, image-derived objects (segments) or objects associated with predefined land units (e.g., agricultural fields) are classified using parametric statistical characteristics (e.g., mean and standard deviation) of the within-object pixels. The objective of this exploratory study was to examine the between- and within-class variability of frequency distributions of multispectral pixel values, and to evaluate a quantitative measure and classification rule that exploits the full pixel frequency distribution of within object pixels (i.e., histogram signatures) compared to simple parametric statistical characteristics. High spatial resolution Quickbird satellite multispectral data of Accra, Ghana were evaluated in the context of mapping land cover and land use and socioeconomic status. Results show that image objects associated with land cover and land use types can have characteristic, non-normal frequency distributions (histograms). Signatures of most image objects tended to match closely the training signature of a single class or sub-class. Curve matching approaches to classifying multi-pixel frequency distributions were found to be slightly more effective than standard statistical classifiers based on a nearest neighbor classifier.
机译:基于地理对象的图像分析(Geobia)的前提是图像对象由对应于感兴趣的地球表面特征的像素的聚集体组成。最常见的是,使用在对象像素内的参数统计特征(例如,平均值和标准偏差)来分类与预定义土地单元(例如农业领域)相关联的图像衍生的对象(例如,农业领域)。该探索性研究的目的是检查多光谱像素值的频率分布的频率分布之间的和内在级别的变异性,并评估利用物体像素内的完整像素频率分布的定量测量和分类规则(即直方图签名)与简单的参数统计特征相比。在绘制土地覆盖和土地利用和社会经济地位的背景下评估了Accra,加纳的高空间分辨率Quickbird卫星数据的多光谱数据。结果表明,与陆地覆盖和土地利用类型相关联的图像对象可以具有特征,非正常频率分布(直方图)。大多数图像对象的签名往往符合单个类或子类的培训签名。发现对分类多像素频率分布的曲线匹配方法比基于最近的邻居分类器的标准统计分类器稍微更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号