首页> 美国卫生研究院文献>other >Predicting Co-Author Relationship in Medical Co-Authorship Networks
【2h】

Predicting Co-Author Relationship in Medical Co-Authorship Networks

机译:预测医学共同作者网络中的共同作者关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research collaborations are encouraged because a synergistic effect yielding good results often appears. However, creating and organizing a strong research group is a difficult task. One of the greatest concerns of an individual researcher is locating potential collaborators whose expertise complement his best. In this paper, we propose a method that makes link predictions in co-authorship networks, where topological features between authors such as Adamic/Adar, Common Neighbors, Jaccard's Coefficient, Preferential Attachment, Katzβ, and PropFlow may be good indicators of their future collaborations. Firstly, these topological features were systematically extracted from the network. Then, supervised models were used to learn the best weights associated with different topological features in deciding co-author relationships. Finally, we tested our models on the co-authorship networks in the research field of Coronary Artery Disease and obtained encouraging accuracy (the precision, recall, F1 score and AUC were, respectively, 0.696, 0.677, 0.671 and 0.742 for Logistic Regression, and respectively, 0.697, 0.678, 0.671 and 0.743 for SVM). This suggests that our models could be used to build and manage strong research groups.
机译:鼓励进行研究合作,因为经常会出现产生良好结果的协同效应。但是,创建和组织强大的研究小组是一项艰巨的任务。单个研究人员最关注的问题之一就是寻找潜在的合作者,他们的专业知识可以补充他的最佳技能。在本文中,我们提出了一种在共同作者网络中进行链接预测的方法,其中作者之间的拓扑特征(例如,Adamic / Adar,共同邻居,Jaccard系数,优先附件,Katzβ和PropFlow)可能是他们未来合作的良好指标。首先,这些拓扑特征是从网络中系统提取的。然后,在确定共同作者关系时,使用监督模型来学习与不同拓扑特征相关的最佳权重。最后,我们在冠心病研究领域的共同作者网络上测试了我们的模型,并获得了令人鼓舞的准确性(Logistic回归的准确性,召回率,F1得分和AUC分别为0.696、0.677、0.671和0.742,以及对于SVM,分别为0.697、0.678、0.671和0.743)。这表明我们的模型可用于建立和管理强大的研究小组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号