首页> 美国卫生研究院文献>other >Multi-Surface and Multi-Field Co-Segmentation of 3-D Retinal Optical Coherence Tomography
【2h】

Multi-Surface and Multi-Field Co-Segmentation of 3-D Retinal Optical Coherence Tomography

机译:3-D视网膜光学相干断层扫描的多表面和多场协同分割。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When segmenting intraretinal layers from multiple optical coherence tomography (OCT) images forming a mosaic or a set of repeated scans, it is attractive to exploit the additional information from the overlapping areas rather than discarding it as redundant, especially in low contrast and noisy images. However, it is currently not clear how to effectively combine the multiple information sources available in the areas of overlap. In this paper, we propose a novel graph-theoretic method for multi-surface multi-field co-segmentation of intraretinal layers, assuring consistent segmentation of the fields across the overlapped areas. After 2-D en-face alignment, all the fields are segmented simultaneously, imposing a priori soft interfield-intrasurface constraints for each pair of overlapping fields. The constraints penalize deviations from the expected surface height differences, taken to be the depth-axis shifts that produce the maximum cross-correlation of pairwise-overlapped areas. The method’s accuracy and reproducibility are evaluated qualitatively and quantitatively on 212 OCT images (20 nine-field, 32 single-field acquisitions) from 26 patients with glaucoma. Qualitatively, the obtained thickness maps show no stitching artifacts, compared to pronounced stitches when the fields are segmented independently. Quantitatively, two ophthalmologists manually traced four intraretinal layers on 10 patients, and the average error (4.58±1.46 μm) was comparable to the average difference between the observers (5.86±1.72 μm). Furthermore, we show the benefit of the proposed approach in co-segmenting longitudinal scans. As opposed to segmenting layers in each of the fields independently, the proposed co-segmentation method obtains consistent segmentations across the overlapped areas, producing accurate, reproducible, and artifact-free results.
机译:当从形成马赛克或一组重复扫描的多个光学相干断层扫描(OCT)图像分割视网膜内层时,利用重叠区域中的附加信息而不是将其视为多余的信息是有吸引力的,尤其是在低对比度和嘈杂的图像中。但是,目前尚不清楚如何有效地组合重叠区域中可用的多个信息源。在本文中,我们提出了一种新颖的图论方法,用于视网膜内层的多表面多场共分割,以确保跨重叠区域的场的一致分割。二维面对面对齐后,所有场均被同时分割,对每对重叠场施加先验的软场间-表面内约束。约束惩罚了与预期表面高度差的偏差,该偏差被视为深度轴偏移,该偏移产生了成对重叠区域的最大互相关。该方法的准确性和可重复性在26例青光眼患者的212张OCT图像上进行了定性和定量评估(20幅9视场,32幅单视场采集)。定性地,与独立分割视场时的明显针迹相比,所获得的厚度图没有显示出针迹伪影。从数量上看,两名眼科医生手动对10位患者进行了四个视网膜内层描记,其平均误差(4.58±1.46μm)与观察者之间的平均差(5.86±1.72μm)相近。此外,我们展示了在共同分割纵向扫描中所提出的方法的好处。与在每个字段中独立地分割层相反,所提出的共分割方法在重叠区域上获得一致的分割,从而产生准确,可再现且无伪影的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号