首页> 美国卫生研究院文献>other >A genomic selection component analysis characterizes migration-selection balance within a hybrid Mimulus population
【2h】

A genomic selection component analysis characterizes migration-selection balance within a hybrid Mimulus population

机译:基因组选择成分分析表征了杂种杂种种群中的迁移选择平衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The genetic differentiation of populations in response to local selection pressures has long been studied by evolutionary biologists, but key details about the process remain obscure. How rapidly can local adaptation evolve, how extensive is the process across the genome, and how strong are the opposing forces of natural selection and gene flow? Here, we combine direct measurement of survival and reproduction with whole-genome genotyping of a plant species (Mimulus guttatus) that has recently invaded a novel habitat (the Quarry population). We renovate the classic selection component method to accommodate genomic data and observe selection at SNPs throughout the genome. SNPs showing viability selection in Quarry exhibit elevated divergence from neighboring populations relative to neutral SNPs. We also find that non-significant SNPs exhibit a subtle, but still significant, change in allele frequency towards neighboring populations, a predicted effect of gene flow. Given that the Quarry population is most probably only 30–40 generations old, the alleles conferring local advantage are almost certainly older than the population itself. Thus, local adaptation owes to the recruitment of standing genetic variation.
机译:进化生物学家早就研究了响应于局部选择压力的种群遗传分化,但是关于该过程的关键细节仍然不清楚。局部适应性发展的速度有多快,整个基因组的过程有多广泛,自然选择和基因流动的对立力量有多强?在这里,我们将生存和繁殖的直接测量与最近入侵了一个新栖息地(采石场种群)的一种植物(Mimulus guttatus)的全基因组基因分型相结合。我们革新了经典的选择成分方法,以容纳基因组数据,并观察整个基因组中SNP的选择。相对于中性SNP,在采石场中显示出生存力选择的SNP与邻近种群的差异性增大。我们还发现,不显着的SNP在朝向邻近人群的等位基因频率上表现出细微但仍然显着的变化,这是基因流的预测作用。鉴于Quarry种群的年龄大概只有30至40代,赋予当地优势的等位基因几乎可以肯定比种群本身年龄大。因此,局部适应性归因于常设遗传变异的募集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号