首页> 美国卫生研究院文献>other >Structure and Function in Homodimeric Enzymes: Simulations of Cooperative and Independent Functional Motions
【2h】

Structure and Function in Homodimeric Enzymes: Simulations of Cooperative and Independent Functional Motions

机译:同二聚酶的结构和功能:协同和独立功能运动的模拟。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale conformational change is a common feature in the catalytic cycles of enzymes. Many enzymes function as homodimers with active sites that contain elements from both chains. Symmetric and anti-symmetric cooperative motions in homodimers can potentially lead to correlated active site opening and/or closure, likely to be important for ligand binding and release. Here, we examine such motions in two different domain-swapped homodimeric enzymes: the DcpS scavenger decapping enzyme and citrate synthase. We use and compare two types of all-atom simulations: conventional molecular dynamics simulations to identify physically meaningful conformational ensembles, and rapid geometric simulations of flexible motion, biased along normal mode directions, to identify relevant motions encoded in the protein structure. The results indicate that the opening/closure motions are intrinsic features of both unliganded enzymes. In DcpS, conformational change is dominated by an anti-symmetric cooperative motion, causing one active site to close as the other opens; however a symmetric motion is also significant. In CS, we identify that both symmetric (suggested by crystallography) and asymmetric motions are features of the protein structure, and as a result the behaviour in solution is largely non-cooperative. The agreement between two modelling approaches using very different levels of theory indicates that the behaviours are indeed intrinsic to the protein structures. Geometric simulations correctly identify and explore large amplitudes of motion, while molecular dynamics simulations indicate the ranges of motion that are energetically feasible. Together, the simulation approaches are able to reveal unexpected functionally relevant motions, and highlight differences between enzymes.
机译:大规模的构象变化是酶催化循环的共同特征。许多酶充当具有活性位点的同二聚体,所述活性位点包含来自两条链的元素。同二聚体中的对称和反对称合作运动可能潜在地导致相关的活性位点打开和/或关闭,这可能对配体结合和释放很重要。在这里,我们检查了两种不同的域交换同型二聚酶中的这种运动:DcpS清道夫去壳酶和柠檬酸合酶。我们使用和比较两种类型的全原子模拟:常规的分子动力学模拟,以识别物理上有意义的构象集合;以及柔性运动的快速几何模拟,沿正常模式方向偏置,以识别蛋白质结构中编码的相关运动。结果表明,打开/关闭运动是两种未配体酶的固有特征。在DcpS中,构象变化以反对称协作运动为主导,导致一个活动位点随着另一个打开而关闭。但是,对称运动也很重要。在CS中,我们确定对称运动(由晶体学建议)和非对称运动都是蛋白质结构的特征,因此,溶液中的行为在很大程度上是不合作的。两种使用非常不同理论水平的建模方法之间的一致性表明,这些行为确实是蛋白质结构固有的。几何模拟正确地识别并探索了大幅度的运动,而分子动力学模拟则表明了在能量上可行的运动范围。总之,模拟方法能够揭示意想不到的功能相关运动,并突出显示酶之间的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号