首页> 美国卫生研究院文献>other >Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects
【2h】

Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects

机译:向心加速反应:昆虫拍打飞行的有效和鲁棒机制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72–85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets.
机译:尽管物理学家和生物学家进行了大量研究,但我们仍未完全理解将昆虫的机翼形态和运动学与产生力联系起来的不稳定的空气动力学。在这里,我们制定了一种力分配方法(FPM),并在计算流体动力学模型中实施了该方法,以将空气动力学力明确且物理上有见地地划分为与机翼运动学,涡度和粘度相关的分量。 FPM在鹰蛾和果蝇飞行中的应用表明,前沿涡旋是这两种昆虫产生升力的主要机制,占净升力的72–85%。但是,还有另一个以前无法确定的机制,即向心加速反应,它最多可产生净升力的17%。向心加速度反应类似于经典的无粘性附加质量,它仅取决于身体的运动学(即加速度),但不同之处在于它需要满足防滑条件和切向组合机翼表面的运动和旋转。此外,对于循环运动,经典的附加质量力完全为零,但向心加速度反作用力并非如此。此外,与由于涡旋引起的升力不同,向心加速反应升力对雷诺数和环境流量扰动不敏感,从而使其成为昆虫飞行稳定性和小型化的重要因素。这种力机制还对流动引起的变形和振动,水下运动以及涉及气泡和液滴的流动具有广泛的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号