首页> 美国卫生研究院文献>other >UVliPiD: A UVPD-based hierarchical approach for de novo characterization of lipid A structures
【2h】

UVliPiD: A UVPD-based hierarchical approach for de novo characterization of lipid A structures

机译:UVliPiD:基于UVPD的脂质A结构从头表征的分层方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The lipid A domain of the endotoxic lipopolysaccharide layer of gram negative bacteria is comprised of a di-glucosamine backbone to which a variable number of variable length fatty acyl chains are anchored. Traditional characterization of these tails and their linkages by nuclear magnetic resonance (NMR) or mass spectrometry is time-consuming and necessitates databases of pre-existing structures for structural assignment. Here, we introduce an automated de novo approach for characterization of lipid A structures that is completely database-independent. A hierarchical decision-tree MSn method is used in conjunction with a hybrid activation technique, UVPDCID, to acquire characteristic fragmentation patterns of lipid A variants from a number of Gram-negative bacteria. Structural assignments are derived from integration of key features from three to five spectra and automated interpretation is achieved in minutes without the need for pre-existing information or candidate structures. This utility of this strategy is demonstrated for a mixture of lipid A structures from an enzymatically modified E. coli lipid A variant. Twenty-seven lipid A structures were discovered, many of which were isomeric, showcasing the need for a rapid de novo approach to lipid A characterization.
机译:革兰氏阴性细菌的内毒素性脂多糖层的脂质A结构域由二葡糖胺骨架组成,在该骨架上固定了数量不等的可变长度脂肪酰基链。这些尾巴及其链接的传统表征是通过核磁共振(NMR)或质谱法进行的,这非常耗时,并且需要使用现有结构的数据库进行结构分配。在这里,我们介绍了一种自动化的从头开始的方法,用于表征完全独立于数据库的脂质A结构。分层决策树MS n 方法与混合激活技术UVPDCID结合使用,以从许多革兰氏阴性细菌中获取脂质A变体的特征性片段化模式。结构分配是从3到5个光谱的关键特征的集成中得出的,并且在几分钟之内即可实现自动解释,而无需预先存在的信息或候选结构。对于来自酶修饰的大肠杆菌脂质A变体的脂质A结构的混合物,证明了该策略的这种实用性。发现了二十七个脂质A结构,其中许多是异构体,这表明需要快速从头开始进行脂质A表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号