首页> 美国卫生研究院文献>other >Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
【2h】

Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control

机译:控制非线性动力学系统的Koopman不变子空间和有限线性表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.
机译:在这项工作中,我们通过将Koopman算子限制在一个由特殊选择的可观察函数跨越的不变子空间中,探索非线性动力学系统的有限维线性表示。 Koopman算子是一个无穷维线性算子,它演化动态系统状态的函数。 Koopman展开中的主导项通常使用动态模式分解(DMD)计算。 DMD使用状态变量的线性测量值,最近发现,这对于非线性系统可能过于严格。选择合适的非线性可观察函数以形成不变子空间,在那里可以获得线性降阶模型,尤其是那些对控制有用的模型,是一个开放的挑战。在这里,我们研究了用于Koopman分析的可观察函数的选择,这些函数可对非线性问题使用最佳线性控制技术。首先,如线性二次调节器(LQR)控制中那样,要包括系统状态的成本,像DMD中那样,将这些状态包括在可观察子空间中是有帮助的。但是,我们发现只有在单个孤立的不动点上才有可能,因为具有多个不动点或更复杂吸引子的系统在全局拓扑上不与有限维线性系统共轭,并且不能用有限维表示包含状态的线性Koopman子空间。然后,我们提出一种数据驱动策略,通过利用一种新算法来确定动力学系统中的相关项,从而通过by1-正则回归非线性函数空间中的数据来确定相关的可观察函数,以进行Koopman分析。我们还将展示该算法与DMD的关系。最后,我们证明了非线性可观察子空间在使用线性最优控制技术为完全非线性系统设计Koopman算子最优控制律时的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号