首页> 美国卫生研究院文献>other >Semi-Supervised Learning of Cartesian Factors: A Top-Down Model of the Entorhinal Hippocampal Complex
【2h】

Semi-Supervised Learning of Cartesian Factors: A Top-Down Model of the Entorhinal Hippocampal Complex

机译:笛卡尔因子的半监督学习:内海马复合体的自上而下的模型。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The existence of place cells (PCs), grid cells (GCs), border cells (BCs), and head direction cells (HCs) as well as the dependencies between them have been enigmatic. We make an effort to explain their nature by introducing the concept of Cartesian Factors. These factors have specific properties: (i) they assume and complement each other, like direction and position and (ii) they have localized discrete representations with predictive attractors enabling implicit metric-like computations. In our model, HCs make the distributed and local representation of direction. Predictive attractor dynamics on that network forms the Cartesian Factor “direction.” We embed these HCs and idiothetic visual information into a semi-supervised sparse autoencoding comparator structure that compresses its inputs and learns PCs, the distributed local and direction independent (allothetic) representation of the Cartesian Factor of global space. We use a supervised, information compressing predictive algorithm and form direction sensitive (oriented) GCs from the learned PCs by means of an attractor-like algorithm. Since the algorithm can continue the grid structure beyond the region of the PCs, i.e., beyond its learning domain, thus the GCs and the PCs together form our metric-like Cartesian Factors of space. We also stipulate that the same algorithm can produce BCs. Our algorithm applies (a) a bag representation that models the “what system” and (b) magnitude ordered place cell activities that model either the integrate-and-fire mechanism, or theta phase precession, or both. We relate the components of the algorithm to the entorhinal-hippocampal complex and to its working. The algorithm requires both spatial and lifetime sparsification that may gain support from the two-stage memory formation of this complex.
机译:位置单元(PC),网格单元(GC),边界单元(BC)和头部方向单元(HC)的存在以及它们之间的依赖关系是难以置信的。我们通过引入笛卡尔因子的概念来解释它们的性质。这些因素具有特定的属性:(i)它们相互假设并互补,例如方向和位置;(ii)具有预测性吸引子的局部离散表示,从而可以进行隐式度量式计算。在我们的模型中,HC代表方向的分布和局部表示。该网络上的预测吸引子动力学形成笛卡尔因子“方向”。我们将这些HC和惯用语视觉信息嵌入到半监督的稀疏自动编码比较器结构中,该结构压缩其输入并学习PC,即全局空间的笛卡尔因子的分布式局部和方向独立(等速)表示。我们使用监督的信息压缩预测算法,并通过类似吸引子的算法从学习的PC中形成方向敏感(定向)的GC。由于该算法可以在PC区域之外(即在其学习范围之外)继续网格结构,因此GC和PC一起形成了我们的度量式笛卡尔因子空间。我们还规定,相同的算法可以产生BC。我们的算法适用于(a)对“什么系统”建模的袋表示,以及(b)对集成点火机制或θ相位进动或两者建模的大小有序的位置单元活动。我们将算法的组件与内海马复合体及其工作联系起来。该算法需要空间稀疏化和生命周期稀疏化,这可能会得到该复合体的两阶段存储形式的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号