首页> 美国卫生研究院文献>other >Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices
【2h】

Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices

机译:纳米电子生物传感器装置上的束缚双层脂质膜的多功能自下而上的合成。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Interfacing nanoelectronic devices with cell membranes can enable multiplexed detection of fundamental biological processes (such as signal transduction, electrophysiology, and import/export control) even down to the single ion channel level, which can lead to a variety of applications in pharmacology and clinical diagnosis. Therefore, it is necessary to understand and control the chemical and electrical interface between the device and the lipid bilayer membrane. Here, we develop a simple bottom-up approach to assemble tethered bilayer lipid membranes (tBLMs) on silicon wafers and glass slides, using a covalent tether attachment chemistry based on silane functionalization, followed by step-by-step stacking of two other functional molecular building blocks (oligo-poly(ethylene glycol) (PEG) and lipid). A standard vesicle fusion process was used to complete the bilayer formation. The monolayer synthetic scheme includes three well-established chemical reactions: self-assembly, epoxy-amine reaction, and EDC/NHS cross-linking reaction. All three reactions are facile and simple and can be easily implemented in many research labs, on the basis of common, commercially available precursors using mild reaction conditions. The oligo-PEG acts as the hydrophilic spacer, a key role in the formation of a homogeneous bilayer membrane. To explore the broad applicability of this approach, we have further demonstrated the formation of tBLMs on three common classes of (nano)electronic biosensor devices: indium-tin oxide-coated glass, silicon nanoribbon devices, and high-density single-walled carbon nanotubes (SWNT) networks on glass. More importantly, we incorporated alemethicin into tBLMs and realized the real-time recording of single ion channel activity with high sensitivity and high temporal resolution using the tBLMs/SWNT network transistor hybrid platform. This approach can provide a covalently bonded lipid coating on the oxide layer of nanoelectronic devices, which will enable a variety of applications in the emerging field of nanoelectronic interfaces to electrophysiology.
机译:纳米电子设备与细胞膜的接口可以实现对基本生物学过程(例如信号转导,电生理学和进出口控制)的多重检测,甚至可以检测到单个离子通道水平,这可以导致药理学和临床诊断中的多种应用。因此,有必要了解和控制装置与脂质双层膜之间的化学和电学界面。在这里,我们开发了一种简单的自下而上的方法,可使用基于硅烷官能化的共价束缚连接化学,在硅片和载玻片上组装束缚的双层脂质膜(tBLM),然后逐步堆叠两个其他功能分子构件(寡聚(乙二醇)(PEG)和脂质)。使用标准的囊泡融合过程来完成双层形成。单层合成方案包括三个公认的化学反应:自组装,环氧胺反应和EDC / NHS交联反应。所有这三种反应均简便易行,并且可以在温和的反应条件下,根据常见的市售前体在许多研究实验室中轻松实现。寡聚PEG充当亲水性间隔基,这是形成均质双层膜的关键作用。为了探索这种方法的广泛适用性,我们进一步证明了在三种常见的(纳米)电子生物传感器设备上形成tBLM:氧化铟锡涂层玻璃,硅纳米带设备和高密度单壁碳纳米管(SWNT)网络在玻璃上。更重要的是,我们将杀虫菊酯纳入了tBLM中,并使用tBLM / SWNT网络晶体管混合平台实现了高灵敏度和高时间分辨率的单离子通道活性的实时记录。这种方法可以在纳米电子器件的氧化物层上提供共价键合的脂质涂层,这将使纳米电子接口与电生理学的新兴领域中的各种应用成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号