首页> 美国卫生研究院文献>other >Optimal Tikhonov Regularization for DEER Spectroscopy
【2h】

Optimal Tikhonov Regularization for DEER Spectroscopy

机译:DEER光谱的最佳Tikhonov正则化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tikhonov regularization is the most commonly used method for extracting distance distributions from experimental double electron-electron resonance (DEER) spectroscopy data. This method requires the selection of a regularization parameter, α, and a regularization operator, L. We analyze the performance of a large set of α selection methods and several regularization operators, using a test set of over half a million synthetic noisy DEER traces. These are generated from distance distributions obtained from in silico double labeling of a protein crystal structure of T4 lysozyme with the spin label MTSSL. We compare the methods and operators based on their ability to recover the model distance distributions from the noisy time traces. The results indicate that several α selection methods perform quite well, among them the Akaike information criterion and the generalized cross validation with either the first- or second-derivative operator. They perform significantly better than currently utilized L-curve methods.
机译:Tikhonov正则化是从实验双电子电子共振(DEER)光谱数据中提取距离分布的最常用方法。此方法需要选择一个正则化参数α和一个正则化算子L。我们使用超过50万条合成嘈杂DEER迹线的测试集,分析了大量α选择方法和几种正则化算子的性能。这些是通过用自旋标记MTSSL对T4溶菌酶的蛋白质晶体结构进行计算机双标记获得的距离分布生成的。我们根据方法和运算符从嘈杂的时间轨迹中恢复模型距离分布的能力进行比较。结果表明,几种α选择方法的性能都很好,其中包括Akaike信息准则和使用一阶或二阶算子的广义交叉验证。它们的性能明显优于当前使用的L曲线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号