首页> 美国卫生研究院文献>other >Defining host–pathogen interactions employing an artificial intelligence workflow
【2h】

Defining host–pathogen interactions employing an artificial intelligence workflow

机译:使用人工智能工作流程定义宿主与病原体的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For image-based infection biology, accurate unbiased quantification of host–pathogen interactions is essential, yet often performed manually or using limited enumeration employing simple image analysis algorithms based on image segmentation. Host protein recruitment to pathogens is often refractory to accurate automated assessment due to its heterogeneous nature. An intuitive intelligent image analysis program to assess host protein recruitment within general cellular pathogen defense is lacking. We present HRMAn (Host Response to Microbe Analysis), an open-source image analysis platform based on machine learning algorithms and deep learning. We show that HRMAn has the capacity to learn phenotypes from the data, without relying on researcher-based assumptions. Using Toxoplasma gondii and Salmonella enterica Typhimurium we demonstrate HRMAn’s capacity to recognize, classify and quantify pathogen killing, replication and cellular defense responses. HRMAn thus presents the only intelligent solution operating at human capacity suitable for both single image and high content image analysis.>Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed ().
机译:对于基于图像的感染生物学,准确的宿主-病原体相互作用的无偏定量是必不可少的,但通常是手动执行,或者使用有限的枚举(采用基于图像分割的简单图像分析算法)执行。由于其异质性,宿主蛋白募集到病原体通常难以进行准确的自动化评估。缺乏用于评估一般细胞病原体防御范围内宿主蛋白募集的直观智能图像分析程序。我们提出了HRMAn(微生物分析的主机响应),这是一个基于机器学习算法和深度学习的开源图像分析平台。我们表明,HRMAN能够从数据中学习表型,而无需依赖基于研究人员的假设。通过使用弓形虫和鼠伤寒沙门氏菌,我们证明了HRMAn能够识别,分类和量化病原体的杀伤,复制和细胞防御反应。因此,HRMAN提出了唯一适用于人员操作的智能解决方案,该解决方案适用于单幅图像和高内涵图像分析。>编者注:本文是通过编辑过程进行的,作者在其中决定如何应对在同行评审中提出的问题。审核编辑的评估是,所有问题都已解决()。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号