首页> 美国卫生研究院文献>other >Deep Learning-based Prediction of Drug-induced Cardiotoxicity
【2h】

Deep Learning-based Prediction of Drug-induced Cardiotoxicity

机译:基于深度学习的药物诱发的心脏毒性预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Blockade of human ether-à-go-go-related gene (hERG) channel by small molecules induces the prolongation of the QT interval which leads to fatal cardiotoxicity, and account for the withdrawal or severe restrictions on the use of many approved drugs. In this study, we develop a deep learning approach, termed deephERG, for prediction of hERG blockers of small molecules in drug discovery and post-marketing surveillance. In total, we assemble 7,889 compounds with well-defined experimental data on the hERG and with diverse chemical structures. We find that deephERG models built by a multi-task deep neural network (DNN) algorithm are superior to those built by single-task DNN, naïve Bayes (NB), and support vector machine (SVM). Specifically, the area under the receiver operating characteristic curve (AUC) value for the best model of deephERG is 0.967 on the validation set. Furthermore, based on 1,824 U.S. Food and Drug Administration (FDA)-approved drugs, 29.6% drugs are computationally identified to have potential hERG inhibitory activities by deephERG, highlighting the importance of hERG risk assessment in the early drug discovery. Finally, we showcase several novel predicted hERG blockers on approved antineoplastic agents, which are validated by clinical case reports, experimental evidences, and literatures. In summary, this study presents a powerful deep learning-based tool for risk assessment of hERG-mediated cardiotoxicities in drug discovery and post-marketing surveillance.
机译:小分子阻断人类去甲相关基因(hERG)通道会导致QT间隔延长,从而导致致命的心脏毒性,并导致许多已批准药物的使用退出或受到严格限制。在这项研究中,我们开发了一种称为deephERG的深度学习方法,用于预测药物发现和上市后监测中小分子的hERG阻滞剂。总共,我们组装了7889种化合物,这些化合物具有关于hERG的明确实验数据和不同的化学结构。我们发现,由多任务深度神经网络(DNN)算法构建的deephERG模型优于由单任务DNN,朴素贝叶斯(NB)和支持向量机(SVM)构建的deephERG模型。具体来说,在验证集中,针对DeephERG最佳模型的接收器工作特性曲线(AUC)值下方的面积为0.967。此外,根据美国食品药品监督管理局(FDA)批准的1,824种药物,deephERG在计算上确定了29.6%的药物具有潜在的hERG抑制活性,这突出了hERG风险评估在早期发现药物中的重要性。最后,我们展示了在批准的抗肿瘤药物上的几种新型预测性hERG阻断剂,这些药物已通过临床病例报告,实验证据和文献进行了验证。总而言之,本研究提供了一种功能强大的基于深度学习的工具,用于在药物发现和上市后监测中对hERG介导的心脏毒性进行风险评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号