首页> 美国卫生研究院文献>other >Dropout and transfer paths: What are the risky profiles when analyzing university persistence with machine learning techniques?
【2h】

Dropout and transfer paths: What are the risky profiles when analyzing university persistence with machine learning techniques?

机译:辍学和转移途径:使用机器学习技术分析大学的持久性时有哪些风险特征?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

University dropout is a growing problem with considerable academic, social and economic consequences. Conclusions and limitations of previous studies highlight the difficulty of analyzing the phenomenon from a broad perspective and with bigger data sets. This paper proposes a new, machine-learning based method, able to examine the problem using a holistic approach. Advantages of this method include the lack of strong distribution hypothesis, the capacity for handling bigger data sets and the interpretability of the results. Results are consistent with previous research, showing the influence of personal and contextual variables and the importance of academic performance in the first year, but other factors are also highlighted with this model, such as the importance of dedication (part or full time), and the vulnerability of the students with respect to their age. Additionally, a comprehensive graphic output is included to make it easier to interpret the discovered rules.
机译:大学辍学是一个日益严重的问题,具有相当大的学术,社会和经济后果。先前研究的结论和局限性突出了从广泛的角度和更大的数据集分析现象的难度。本文提出了一种新的基于机器学习的方法,该方法能够使用整体方法来检查问题。这种方法的优点包括缺乏强大的分布假设,处理更大数据集的能力以及结果的可解释性。结果与先前的研究一致,显示了第一年个人和情境变量的影响以及学业成绩的重要性,但该模型还强调了其他因素,例如奉献的重要性(兼职或全职),以及学生在年龄方面的脆弱性。此外,还包括全面的图形输出,可以更轻松地解释发现的规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号