首页> 美国卫生研究院文献>Bioinformatics >Integrating sequence expression and interaction data to determine condition-specific miRNA regulation
【2h】

Integrating sequence expression and interaction data to determine condition-specific miRNA regulation

机译:整合序列表达和相互作用数据以确定条件特异性miRNA调控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Motivation: MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. MiRNAs were shown to play an important role in development and disease, and accurately determining the networks regulated by these miRNAs in a specific condition is of great interest. Early work on miRNA target prediction has focused on using static sequence information. More recently, researchers have combined sequence and expression data to identify such targets in various conditions.>Results: We developed the Protein Interaction-based MicroRNA Modules (PIMiM), a regression-based probabilistic method that integrates sequence, expression and interaction data to identify modules of mRNAs controlled by small sets of miRNAs. We formulate an optimization problem and develop a learning framework to determine the module regulation and membership. Applying PIMiM to cancer data, we show that by adding protein interaction data and modeling cooperative regulation of mRNAs by a small number of miRNAs, PIMiM can accurately identify both miRNA and their targets improving on previous methods. We next used PIMiM to jointly analyze a number of different types of cancers and identified both common and cancer-type-specific miRNA regulators.>Contact: >Supplementary information: are available at Bioinformatics online.
机译:>动机:MicroRNA(miRNA)是小的非编码RNA,可转录后调控基因表达。已证明MiRNA在发育和疾病中起重要作用,因此在特定条件下准确确定由这些miRNA调控的网络非常重要。 miRNA靶标预测的早期工作集中在使用静态序列信息上。最近,研究人员结合了序列和表达数据,以识别各种条件下的此类靶标。>结果:我们开发了基于蛋白质相互作用的MicroRNA模块(PIMiM),它是一种基于回归的概率方法,将序列整合在一起,表达和相互作用数据,以鉴定由少量miRNA控制的mRNA模块。我们制定了一个优化问题,并开发了一个学习框架来确定模块的规则和成员资格。将PIMiM应用于癌症数据,我们显示出通过添加蛋白质相互作用数据并通过少量miRNA建模mRNA的协同调节作用,PIMiM可以准确地识别miRNA及其靶标,与以前的方法相比有所改进。接下来,我们使用PIMiM共同分析了许多不同类型的癌症,并确定了常见的和特定于癌症类型的miRNA调节剂。>联系方式: >补充信息:可从Bioinformatics获得。线上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号